폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용

Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters

  • 이은희 (이화여자대학교 환경공학과) ;
  • 박현정 (이화여자대학교 환경공학과) ;
  • 조윤성 (이화여자대학교 환경공학과) ;
  • 류희욱 (숭실대학교 환경화학공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Lee, Eun-Hee (Department of Environmental Sciences and Engineering, Ewha Womans University) ;
  • Park, Hyunjung (Department of Environmental Sciences and Engineering, Ewha Womans University) ;
  • Jo, Yun-Seong (Department of Environmental Sciences and Engineering, Ewha Womans University) ;
  • Ryu, Hee Wook (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Cho, Kyung-Suk (Department of Environmental Sciences and Engineering, Ewha Womans University)
  • 투고 : 2009.11.19
  • 심사 : 2009.12.11
  • 발행 : 2010.04.30

초록

폐가스 처리용 바이오필터의 핵심 요소 기술은 생촉매(미생물), 담체, 설계 운전 기술 및 진단 관리 기술이다. 특히, 바이오필터의 성능은 부하 조건과 바이오필터 내 미생물 군집 구조에 의해 영향을 받는다. 지금까지 바이오필터의 미생물 연구는 대부분 배양법을 기초로 하여 수행되어 왔으나, 최근에 보다 신속하고 정확하게 미생물 군집을 분석할 수 있는 방법들이 제시되고 있다. 본 논문에서는 생리적, 생화학적 및 분자생물학적 미생물 군집 분석 방법과 이를 활용한 바이오필터의 미생물 군집 특성을 조사한 연구사례를 소개하고, 미생물 군집 분석법의 바이오필터에 적용 가능성에 대해 고찰하였다. Community-level physiological profile 방법은 시료 중에 포함된 종속영양미생물의 탄소기질 이용능력을 기반으로 군집 특성을 조사하는 것이며, Phospholipid fatty acid analysis는 미생물 세포막 지방산을 분석하여 군집 특성을 조사하는 방법이다. 환경시료로부터 직접 추출한 DNA를 활용하는 분자생물학적 분석법에는 "partial community DNA analysis"와 "whole community DNA analysis"가 있다. 전자의 방법은 PCR 과정에 의해 증폭시킨 염기서열을 분석하는 것으로 ribosomal operon 유전자가 가장 많이 활용되었다. 이 방법은 다시 PCR fragment cloning 및 genetic fingerprinting으로 구분되며, genetic fingerprinting 방법으로는 denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis 및 random amplified polymorphic DNA 방법으로 세분화된다. 추출된 전체 군집의 DNA를 분석하는 방법에는 total genomic cross-DNA hybridization, 총 추출 DNA의 열 변성/재결합 방법 및 밀도구배를 이용하여 추출한 DNA를 분획화하는 방법 등이 있다.

There are four key factors for gas-phase biofilters; biocatalysts(microorganisms), packing materials, design/operating techniques, and diagnosis/management techniques. Biofilter performance is significantly affected by microbial community structures as well as loading conditions. The microbial studies on biofilters are mostly performed on basis of culture-dependent methods. Recently, advanced methods have been proposed to characterize the microbial community structure in environmental samples. In this study, the physiological, biochemical and molecular methods for profiling microbial communities are reviewed, and their applicability to biofilters is discussed. Community-level physiological profile is based on the utilization capability of carbon substrate by heterotrophic community in environmental samples. Phospholipid fatty acid analysis method is based on the variability of fatty acids present in cell membranes of different microorganisms. Molecular methods using DNA directly extracted from environmental samples can be divided into "partial community DNA analysis" and "whole community DNA analysis" approaches. The former approaches consist in the analysis of PCR-amplified sequence, the genes of ribosomal operon are the most commonly used sequences. These methods include PCR fragment cloning and genetic fingerprinting such as denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and random amplified polymorphic DNA. The whole community DNA analysis methods are total genomic cross-DNA hybridization, thermal denaturation and reassociation of whole extracted DNA and extracted whole DNA fractionation using density gradient.

키워드

참고문헌

  1. Grommen, R. and Verstraete, W., "Environmental Biotechnology: the Ongoing Quest," J. Biotechnol., 98, 113-123(2002). https://doi.org/10.1016/S0168-1656(02)00090-1
  2. Devinny, J. S., Deshusses, M. A. and Webster, T. S., "Biofiltration for Air Pollution Control," Florida, Lewis Publishers(1999).
  3. Adib, F., Bagreev, A. and Bandosz, T. J., "Effect of pH and Surface Chemistry on the Mechanism of H2S Removal by Activated Carbons," J. Colloid Interface Sci., 216, 360-369(1999). https://doi.org/10.1006/jcis.1999.6335
  4. Barona, A., Elias, A., Arias, R., Cano, I. and Gonzalez, R., "Biofilter Response to Gradual and Sudden Variations in Operating Conditions," Biochem. Eng. J., 22, 25-31(2004). https://doi.org/10.1016/j.bej.2004.07.006
  5. Vergara-Fernandez, A., Molina, L. L., Pulido, N. A. and Aroca, G., "Effect of Gas Flow Rate, Inlet Concentration and Temperature on the Biofiltration of Toluene Vapors," J. Environ. Manage., 84, 115-122(2007). https://doi.org/10.1016/j.jenvman.2006.04.009
  6. Yanzekontchou, C. and Gschwind, N., "Mineralization of the Herbicide Atrazine as a Carbon Source by a Pseudomonas Strain," Appl. Environ. Microbiol., 60, 4297-4302(1994).
  7. Mandelbaum, R. T., Allan, D. L. and Wackett, L. P., "Isolation and Characterization of a Pseudomonas sp. that Mineralizes the s-triazine Herbicide Atrazine," Appl. Environ. Microbiol., 61, 1451-1457(1995).
  8. Radosevich, M., Traina, S. J., Hao, Y. L. and Tuovinen, O. H., "Degradation and Mineralization of Atrazine by a Soil Bacterial Isolate," Appl. Environ. Microbiol., 61, 297-302(1995).
  9. Burgess, J. E., Parsons, S. A. and Stuetz, R. M., "Developments in Odour Control and Waste Gas Treatment Biotechnology: a Review," Biotechnol. Adv., 19, 35-63(2001). https://doi.org/10.1016/S0734-9750(00)00058-6
  10. van Groenestijn, J. W. and Hesselink, P. G. M., "Biotechniques for Air Pollution Control," Biodegradation, 1, 191-206(1993).
  11. Wani, A. H., Branion, R. M. R. and Lau, A. K., "Biofiltration: A Promising and Cost-effective Control Technology for Odors, VOCs, and Air Toxics," J. Environ. Sci. Heal., 32, 2027-2055 (1997). https://doi.org/10.1080/10934529709376664
  12. Cho, K. S., Ryu, H. W. and Lee, N. Y., "Biological Deodorization of Hydrogen Sulfide Using Porous Lava as a Carrier of Thiobacillus thiooxidans," J. Biosci. Bioeng., 90, 25-31(2000).
  13. Cho, K. S., Hirai, M. and Shoda, M., "Enhanced Removal Efficiency of Malodorous Gases in a Pilot-scale Peat Biofilter Inoculated with Thiobacillus thioparus DW44," J. Ferment. Bioeng., 73, 46-50(1992). https://doi.org/10.1016/0922-338X(92)90230-R
  14. Chung, Y. C. and Tseng, C. P., "Biotreatment of Ammonia from Air by an Immobilized Arthrobacter oxydans CH8 Biofilter," Biotechnol. Prog., 13, 794-798(1997). https://doi.org/10.1021/bp970065e
  15. Kim, N. J., Hirai, M. and Shoda, M., "Removal Characteristics of High Load Ammonia Gas by a Biofilter Seeded with a Marine Bacterium, Vibrio alginolyticus," Biotechnol. Lett., 22, 1295-1299 (2000). https://doi.org/10.1023/A:1005605706932
  16. Lee, E. Y., Cho, K. S. and Ryu, H. W., "Degradation Characterization of Sulfur-containing Malodorous Gases by Acidiothiobacillus thiooxidans AZ11", Kor. J. Odor Res. Eng., 2, 46-53(2003).
  17. Lee, E. Y., Cho, K. S., Han, H. D. and Ryu, H. W., "Hydrogen Sulfide Effects on Ammonia Removal by a Biofilter Seeded with Earthworm Casts," J. Environ. Qual., 31, 1782-1788(2002a). https://doi.org/10.2134/jeq2002.1782
  18. Lee, E. Y., Cho, K. S. and Ryu, H. W., "Simultaneous Removal of $H_2S\;and\;NH_3$ in a Biofilter Inoculated with Acidithiobacillus thiooxidans TAS", J. Biosci. Bioeng., 99, 611-615(2005). https://doi.org/10.1263/jbb.99.611
  19. Malhautier, L., Gracian, C., Roux, J. C., Fanlo, J. L. and Cloirec, P. L., "Biological Treatment Process of Air Loaded with an Ammonia and Hydrogen Sulfide Mixture," Chemoshere, 50, 145-153(2003). https://doi.org/10.1016/S0045-6535(02)00395-8
  20. Oyarzun, P., Arancibia, F., Canales, C. and Aroca, G. E., "Biofiltration of High Concentration of Hydrogen Sulphide Using Thiobacillus thioparus," Process Biochem., 39, 165-170(2003). https://doi.org/10.1016/S0032-9592(03)00050-5
  21. Shinabe, K., Oketani, S., Ochi, T. and Matsumura, M., "Characteristics of Hydrogen Sulfide Removal by Thiobacillus thiooxidans KS1 Isolated from a Carrier-packed Biological Deodorization System," J. Ferment. Bioeng., 80, 592-598(1995). https://doi.org/10.1016/0922-338X(96)87737-3
  22. Tiwaree, R. S., Cho, K. S., Hirai, M. and Shoda, M., "Biological Deodorization of Dimethyl Sulfide Using Different Fabrics as the Carriers of Microorganisms," Appl. Biochem. Biotechnol., 32, 135-148(1992). https://doi.org/10.1007/BF02922154
  23. Wani, A. H., Richard, M. R. B. and Anthony, K. L., "Effects of Periods of Starvation and Fluctuating Hydrogen Sulfide Concentration on Biofilter Dynamics and Performance", J. Hazard. Mater., 60, 287-303(1998). https://doi.org/10.1016/S0304-3894(98)00154-X
  24. Yani, M., Hirai, M. and Shoda, M., "Removal Kinetics of Ammonia by the Biofilter Seeded with Night Soil Sludge," J. Ferment. Bioeng., 85, 502-506(1998). https://doi.org/10.1016/S0922-338X(98)80069-X
  25. Lee, E. Y., Lee, N. Y., Cho, K. S. and Ryu, H. W., "Removal of Hydrogen Sulfide by Sulfate-resistant Acidiothiobacillus thiooxidans AZ11," J. Biosci. Bioeng., 100(2), 309-314(2006).
  26. Delhomenie, M. C., Bibeau, L., Bredin, N., Roy, S., Broussau, S., Brzezinski, R., Kugelmass, J. K. and Heitz, M., "Biofilteration of Air Contaminated with Toluene on a Compost-based Bed," Adv. Environ. Res., 6, 239-254(2002). https://doi.org/10.1016/S1093-0191(01)00055-7
  27. Jorio, H., Kiared, K., Brzezinski, R., Leroux, A., Viel, G. and Heitz, M.,""Treatment of Air Polluted with High Concentrations of Toluene and Xylene in a Pilot-scale Biofilter," J. Chem. Technol. Biotechnol., 73, 183-196(1998). https://doi.org/10.1002/(SICI)1097-4660(1998110)73:3<183::AID-JCTB943>3.0.CO;2-7
  28. Jorio, H., Bibeau, L. and Heitz, M., "Biofiltration of Air Contaminated by Styrene: Effect of Nitrogen Supply, Gas Low Rate and Inlet Concentration," Environ. Sci. Technol., 34, 1764-1771 (2000). https://doi.org/10.1021/es990911c
  29. Kam, S. K., Kang, K. H. and Lee, M. G., "Removal Characteristics of Ethyl Acetate and 2-butanol by a Biofilter Packed with Jeju Scoria," J. Microbiol. Biotechnol., 15, 977-983(2005).
  30. Kim, J., Ryu, H. W., Jung, D. J., Lee, T. H. and Cho, K. S., "Styrene Degradation in a Polyurethane Biofilter Inoculated with Pseudomonas sp. IS-3," J. Microbiol. Biotechnol., 15, 1207-1213 (2005).
  31. Kwon, H. H., Lee, E. Y., Cho, K. S. and Ryu, H. W., "Benzene Biodegradation Using the Polyurethane Biofilter Immobilized with Stenotrophomonas maltophilia T3-c, " J. Microbiol. Biotechnol. 13, 70-76(2003).
  32. Lee, E. Y., Jun, Y. S., Cho, K. S. and Ryu, H. W., "Degradation Characteristics of Toluene, Benzene, Ethylbenzene, and Xylene by Stenotrophomonas maltophilia T3-c," J. Air Was. Manage. Assoc., 52, 400-406(2002). https://doi.org/10.1080/10473289.2002.10470796
  33. Lu, C., Lin, M. R. and Lin, W. C., "Removal of BTEX Vapor from Waste Gases by a Trickle Bed Biofilter," J. Air. Was. Manage. Assoc., 50, 411-417(2000). https://doi.org/10.1080/10473289.2000.10464021
  34. Rene, E. R., Murthy, D. V. S. and Swaminathan, T., "Performance Evaluation of a Compost Biofilter Treating Toluene Vapours", Process Biochem., 40, 2771-2779(2005). https://doi.org/10.1016/j.procbio.2004.12.010
  35. Shim, E. H., Kim, J., Cho, K. S. and Ryu, H. W., "Biofiltration and Inhibitory Interactions of Gaseous Benzene, Toluene, Xylene and Methyl tert-butyl Ether," Environ. Sci. Technol., 40, 3089-3094(2006). https://doi.org/10.1021/es052099l
  36. Singh, R. S., Agnihotri, S. S. and Upadhyay, S. N., "Removal of Toluene Vapour Using Agro-waste as Biofilter Media," Biores. Technol., 97, 2296-2301(2006). https://doi.org/10.1016/j.biortech.2005.10.036
  37. Zilli, M., Del Borghi, A. and Converti, A., "Toluene Vapour Removal in a Laboratory-scale Biofilter," Appl. Microbiol. Biotechnol., 54, 248-254(2005).
  38. Ryu, H. W., Kim, S. J., Cho, K. S. and Lee, T. H., "Toluene Degradation in a Polyurethane Biofilter at High Loading," Biotechnol. Bioprocess Eng., 13(9), 360-365(2008).
  39. Lee, E. H. and Cho, K. S., "Characterization of Cyclohexane and Hexane Degradation by Rhodococcus sp. EC1," Chemosphere, 71, 1738-1744(2008). https://doi.org/10.1016/j.chemosphere.2007.12.009
  40. Cho, K. S., Yoo, S. K. and Ryu, H. W., "Thermophilic Biofiltration of Benzene and Toluene," J. Microbiol. Biotechnol., 17(12), 1976-1982(2007).
  41. Hirai M., Mamamoto, M., Yani, M., and Shoda M., "Comparison of the Biological $NH_3$ Removal Chracteristics Among four Inorganic Packing Materials, " J. Biosci. Bioeng., 91, 428-430(2001). https://doi.org/10.1263/jbb.91.428
  42. Maestre, J. P., Gamisans, X., Gabriel, D. and Lafuente, J., "Fungal Biofilters for Toluene Biofiltration: Evaluation of the pErformance with four Packing Materials Under Different Operating Conditions," Chemosphere, 67, 684-692(2007). https://doi.org/10.1016/j.chemosphere.2006.11.004
  43. Lee, T. H., Kim, J., Kim, M. J., Ryu, H. W. and Cho, K. S., "Degradation Characteristics of Methyl Ethyl Ketone by Pseudomonas. sp. KT-3 in Liquid Culture and Biofilter," Chemosphere, 63(2), 315-322(2006). https://doi.org/10.1016/j.chemosphere.2005.07.067
  44. van Lith, C., Leson, G. and Michelsen, R., "Evaluating Design Options for Biofilters, " J. Air Was. Manage. Assoc., 47, 37-48(1997). https://doi.org/10.1080/10473289.1997.10464410
  45. Yang, Y. and Allen, E. R., "Biofiltration Control of Hydrogen Sulphide, 1: Design and Operational Parameters," J. Air Waste Manag. Assoc., 44, 863-868(1994).
  46. Delhomenie, M. C., Bibeua, L., Gendron, J., Brzezinski, R. and Heitz, M., "A Study of Clogging in a Biofilter Treating Toluene Vapors," Chem. Eng. J., 94, 211-222(2003). https://doi.org/10.1016/S1385-8947(03)00052-4
  47. Iliuta, I. and Larachi, F., "Transient Biofilter Aerodynamics and Clogging for VOC Degradation," Chem. Eng. Sci., 59, 3293-3302 (2004). https://doi.org/10.1016/j.ces.2004.05.004
  48. Kim, D. and Sorial, G. A., "Role of Biological Activity and Biomass Distribution in Air Biofilter Performance," Chemosphere, 66, 1758-1764(2007). https://doi.org/10.1016/j.chemosphere.2006.06.069
  49. Mendoza, J. A., Prado, O. J., Veiga, M. C. and Kennes, C., "Hydrodynamic Behavior and Comparison of Technologies for the Removal of Excess Biomass in Gas-phase Biofilters," Wat. Res., 38, 404-413(2004). https://doi.org/10.1016/j.watres.2003.09.014
  50. Weber, F. J. and Hart Mans, S., "Use of Activated Carbon as a Buffer in Biofiltration of Waste Gases with Fluctuating Concentrations of Toluene," Appl. Microbiol. Biotechnol., 43, 365-369 (1995). https://doi.org/10.1007/BF00172840
  51. Wright, W. F., "Transient Response of Vapor-phase Bio Filters," Chem. Eng. J., 113, 161-173(2005). https://doi.org/10.1016/j.cej.2005.04.009
  52. Lee, E. H., Cho, K. S. and Ryu, H. W., "Application of Quantitative Real-time PCR for Quantification of Rhodococcus sp. EH831 in a Polyurethane Biofilter," J. Environ. Biol., 30, 155-159(2009).
  53. Ranjard, L., Poly, F. and Nazaret, S., "Monitoring Complex Bacterial Communities Using Culture-independent Molecular Techniques: Application to Soil Environment," Res. Microbiol., 151, 167-177(2000). https://doi.org/10.1016/S0923-2508(00)00136-4
  54. Watanabe, K. and Hamamura, N., "Molecular and Physiological Approaches to Understanding the Ecology of Pollutant Degradation," Curr. Opin. Biotechnol., 14, 289-295(2003). https://doi.org/10.1016/S0958-1669(03)00059-4
  55. Leckie, S. E., "Methods of Microbial Community Profiling and Their Application to Forest Soils," Forest Ecol. Manag., 220, 88-106(2005). https://doi.org/10.1016/j.foreco.2005.08.007
  56. Garland, J. L. and Mills, A. L., "Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-level Sole-carbon-source Utilization, " Appl. Environ. Microbiol., 57, 2351-2359(1991).
  57. Weber, K. P., Gehder, M. and Legge, R. L., "Assessment of Changes in the Microbial Community of Constructed Wetland Mesocosms in Response to Acid Mine Drainage Exposure," Water Res., 42, 180-188(2008). https://doi.org/10.1016/j.watres.2007.06.055
  58. Muhammad, A., Xu, J., Li, Z., Wang, H. and Yao, H., "Effects of Lead and Cadmium Nitrate on Biomass and Substrate Utilization Pattern of Soil Microbial Communities," Chemosphere, 60, 508-514(2005). https://doi.org/10.1016/j.chemosphere.2005.01.001
  59. Preston-Mafham, J., Boddy, L. and Randerson, P. F., "Analysis or Microbial Community Functional Diversity Using Sole-carbon-source Utilisation Profilesóa Critique," FEMS Microbiol. Ecol., 42, 1-14(2002).
  60. Bligh, E. G. and Dyer, W. J., "A Rapid Method of Total Lipid Extraction and Purification," J. Biochem. Physiol., 37, 911-917 (1959). https://doi.org/10.1139/o59-099
  61. White, D. C., Stair, J. O. and Ringelberg, D. B., "Quantitative Comparison of in situ Microbial Biodiversity by Signature Biomarker Analysis," J. Ind. Microbiol., 17, 185-196(1996). https://doi.org/10.1007/BF01574692
  62. Hugenholtz, P., Goebel, B. M. and Pace, N. R., "Impact of Culture-independent Studies on the Emerging Phylogenetic View of Bacterial Diversity," J. Bacteriol., 180, 4765-4774(1998).
  63. Smit, E., Leeflang, P. and Wernars, K., "Detection of Shifts in Microbial Community Structure and Diversity in Soil Caused by Copper Contamination Using Amplified Ribosomal DNA Restriction Analysis, " FEMS Microbiol. Ecol., 23, 249-261(1997). https://doi.org/10.1111/j.1574-6941.1997.tb00407.x
  64. Ranjard, L., Poly, F., Richaume, A., Gourbiere, F. and Nazaret, S., "Bacterial Community Structure Assess by two DNA Fingerprint at Microscale Level in Soil," in Proceeding of the International Congress NATO ASI Molecular Advances in Molecular Ecology, Erice, Italy(1998).
  65. Ranjard, L., Nazaretm, S., Gourbiere, F., Thioulouse, J., Linet, P. and Richaume, A., "A Soil Microscale Study to Reveal the Heterogeneity of Hg(II) Impact on Indigenous Bacteria by Quantification of Adapted Phenotypes and Analysis of Community DNA Fingerprints," FEMS Microbiol. Ecol., 31, 107-115(2000).
  66. Wintzingerode, F., Gobel, U. B. and Stackebrandt, E., "Determination of Microbial Diversity in Environmental Samples: Pitfalls of PCR-based rRNA Analysis," FEMS Microbiol. Rev., 21, 213-229(1997). https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  67. Vallaeys, T., Topp, E. and Muyzer, G., "Evaluation of Denaturing Gradient Gel Electrophoresis in the Detection of 16S rDNA Sequence Variation in Rhizobia and Methanotrophs, " FEMS Microbiol. Ecol., 24, 279-285(1997). https://doi.org/10.1111/j.1574-6941.1997.tb00445.x
  68. Felske, A. and Akkermans, A. D. L., "Spatialhomogeneity of Abundant Bacterial 16S rRNA Molecules in Grassland Soils," Microbial Ecol., 36, 31-36(1998). https://doi.org/10.1007/s002489900090
  69. Muyzer, G., De Waal, E. C. and Uitterlinden, A. G., "Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-amplified Genes Coding for 16S rRNA," Appl. Environ. Microbiol., 59, 695-700(1993).
  70. Borneman, J. and Triplett, E. W., "Molecular Microbial Diversity in Soil from Eastern Amazonia: Evidence for Unusual Microorganisms and Microbial Population Shifts Associated with Deforestation, " Appl. Environ. Microbiol., 63, 2647-2653(1997).
  71. Hadrys, H., Balick, M. and Schierwater, B., "Applications of Random Amplified Polymorphic DNA(RAPD) in Molecular Ecology," Mol. Ecol., 1, 55-63(1992). https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
  72. Wikstrom, P., Andersson, A. C. and Forsman, M., "Biomonitoring Complex Microbial Communities Using Random Amplified Polymorphic DNA and Principal Component Analysis," FEMS Microbiol. Ecol., 28, 131-139(1999).
  73. Lee, S. and Furhman, J. A., "DNA Hybridization to Compare Species Composition of Natural Bacterioplankton Assemblages," Appl. Environ. Microbiol., 56, 739-746(1990).
  74. Xia, X., Bollinger, J. and Ogram, A., "Molecular Genetic Analysis of the Response of Three Soil Microbial Communities to the Application of 2, 4-D," Mol. Ecol., 4, 17-28(1995). https://doi.org/10.1111/j.1365-294X.1995.tb00188.x
  75. Torsvik, V., Goskoyr, J. and Daae, F. L., "High Diversity in DNA of Soil Bacteria," Appl. Environ. Microbiol., 56, 782-787(1990).
  76. Holben, W. E. and Harris, D., "DNA-based Monitoring of Total Bacterial Community Structure in Environmental Samples," Mol. Ecol., 4, 627-631(1995). https://doi.org/10.1111/j.1365-294X.1995.tb00263.x
  77. Rotthauwe, J. H., Witzel, K. P. and Liesack, W., "The Ammonia Monooxygenase Structural Gene amoA as a Funtional Marker: Molecular Fine-scale Analysis of Natural Ammonia-oxidizing Populations," Appl. Environ. Microbiol., 63, 4707-4712(1997).
  78. Auman, A. J. and Lidstrom, M. E., "Analysis of sMMO-containing type I Methanotrophs in Lake Washington Sediment," Environ. Microbiol., 4, 517-524(2002). https://doi.org/10.1046/j.1462-2920.2002.00323.x
  79. Smits, T. H. M., Röthlisberger, M., Witholt, B. and van Beilen, J. B., "Molecular Screening for Alkane Hydroxylase Genes in Gram-negative and Gram-positive Strains," Environ. Microbiol., 1, 307-317(1999). https://doi.org/10.1046/j.1462-2920.1999.00037.x
  80. Beller, H. R., Kane, S. R., Legler, T. C. and Alvarez, P. J., "A Real-time Polymerase Chain Reaction Method for Monitoring Anaerobic, Hydrocarbon-degrading Bacteria Based on a Catabolic Gene," Environ. Sci. Technol., 36, 3977-3984(2002). https://doi.org/10.1021/es025556w
  81. Grove, J. A., Kautola, H., Javadpour, S., Moo-Young, M. and Anderson, W. A., "Assessment of Changes in the Microorganism Community in a Biofilter", Biochem. Eng. J., 18, 111-114(2004). https://doi.org/10.1016/S1369-703X(03)00182-7
  82. Steele, J. A., Ozis, F., Fuhrmana, J. A. and Devinny, J. S., "Structure of Microbial Communities in Ethanol Biofilters," Chem. Eng. J., 113, 135-143(2005). https://doi.org/10.1016/j.cej.2005.04.011
  83. Chung, Y. C., "Evaluation of Gas Removal and Bacterial Community Diversity in a Biofilter Developed to Treat Composting Exhaust Gases," J. Hazard. Mater., 144, 377-385(2007). https://doi.org/10.1016/j.jhazmat.2006.10.045
  84. Ho, K. L., Chung, Y. C., Lin, Y. H. and Tseng, C. P., "Microbial Populations Analysis and Field Application of Biofilter for the Removal of Volatile-sulfur Compounds from Swds Wastewater Treatment System," J. Hazard. Mater., 152, 580-588(2008a). https://doi.org/10.1016/j.jhazmat.2007.07.021
  85. Ho, K. L., Chung, Y. C. and Tseng, C. P., "Continuous Deodorization and Bacterial Community Analysis of a Biofilter Treating Nitrogen-containing Gases from Swine Waste Storage Pits," Bioresour. Technol., 99, 2757-2765(2008b). https://doi.org/10.1016/j.biortech.2007.06.041
  86. Ding, Y., Wu, W., Han, Z. and Chen, Y., "Correlation of Reactor Performance and Bacterial Community Composition During the Removal of Trimethylamine in Three-stage Biofilters," Biochem. Eng. J., 38, 248-258(2008). https://doi.org/10.1016/j.bej.2007.07.011
  87. Jun, Y. and Wenfeng, X., "Ammonia Biofiltration and Community Analysis of Ammonia-oxidizing Bacteria in Biofilters, " Bioresour. Technol., 100, 3869-3876(2009). https://doi.org/10.1016/j.biortech.2009.03.021
  88. O-Thong, S., Prasertsan, P. and Birkeland, N. K., "Evaluation of Methods for Preparing Hydrogen-producing Seed Inocula Under Thermophilic Condition by Process Performance and Microbial Community Analysis," Bioresour. Technol., 100, 909-918(2009). https://doi.org/10.1016/j.biortech.2008.07.036
  89. Cai, Z., Sorial, G. A., Zhang, K., Saikaly, P., Zein, M. M. and Oerther, D. B., "Effect of Changing VOC Influent Composition on the Microbial Community Structure of TBABs," Water Air Soil Poll., 8, 311-321(2008). https://doi.org/10.1007/s11267-007-9143-9
  90. Ait-Benichou, S., Jugnia, L. B., Greer, C. W. and Cabral, A. R., "Methanotrophs and Methanotrophic Activity in Engineered Landfill Biocovers," Waste Manage., 29, 2509-2517(2009). https://doi.org/10.1016/j.wasman.2009.05.005