Advances of Post-combustion Carbon Capture Technology by Dry Sorbent

건식흡수제 이용 연소배가스 이산화탄소 포집기술

  • Yi, Chang-Keun (Climate Change Technology Research Division, Korea Institute of Energy Research)
  • 이창근 (한국에너지기술연구원 기후변화기술연구본부)
  • Received : 2009.11.14
  • Accepted : 2009.12.04
  • Published : 2010.04.30

Abstract

This paper addresses recent status and trends of carbon dioxide capture technologies using dry sorbents in the flue gas. The advantages of dry sorbent $CO_2$ capture technology are broader operating temperature range, less energy loss, less waste water, less corrosion problem, and natural properties of solid wastes. Recently, U.S.A. and Korea have been developing processes capturing $CO_2$ from real coal flue gas as well as sorbents improving sorption capacity to decrease total $CO_2$ capture cost. New class of dry sorbents have been developed such as chemisorbents with alkali metals of which material cost is low, amines physically adsorbed on silica supports, amines covalently tethered to the silica support, carbon-supported amines, polymer-supported amines, amine-containing solid organic resins and metal-organic framework. The breakthrough is needed in the materials on dry sorbents to decrease capture cost.

이산화탄소 포집기술 중 건식흡수제를 이용한 연소 후 이산화탄소 포집기술에 대하여 최신기술개발 현황에 대하여 자세히 기술하였다. $CO_2$ 포집에 있어서 건식흡수제 이용 기술의 장점으로는 조업온도의 폭이 크고, 에너지손실이 적으며, 폐수발생이 없고, 부식성이 적으며, 고체폐기물의 상대적인 천연성을 들 수 있다. 현재 한국과 미국에서는 건식흡수제의 성능 개선과 더불어 실제 연소배가스로부터 $CO_2$ 포집을 위한 공정 개발을 통해 포집비용을 줄이려는 연구가 지속적으로 이루어지고 있다. 건식흡수제는 가격이 싼 알칼리금속 계열의 화학흡수제, 아민을 실리카 지지체에 고정시킨 흡수제, 아민을 실리카 지지체에 공유결합시킨 흡수제, 기공성의 탄소에 아민의 기능성을 첨가시킨 흡수제, 아민고정 고분자지지체 흡수제, 금속유기구조체등의 연구가 이루어지고 있다. 포집비용을 대폭 줄이기 위하여 소재에 있어서도 혁신적인 성능 개선이 필요한 시점이다.

Keywords

References

  1. Intergovernmental Panel on Climate Change "Special Report on Carbon Dioxide Capture and Storage : Summary for Policy Makers," www.ipcc.ca(2005).
  2. White, C., Strazisar, B. R., Granite, E. V., Koffman, J. S. and Pennline, H. W., "Separation and Capture of $CO_2$ from Large Stationary Sources and Sequestration in Geological Formations-Coalbeds and Deep Saline Aquifers," J. Air Waste Manage. Assoc., 53, 645-715(2003). https://doi.org/10.1080/10473289.2003.10466206
  3. Harrison, D. P., "The Role of Solids in $CO_2$ Capture: a Mini Review," Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies Vancouver, Canada 1101-1106(2004).
  4. Nelson, T., Coleman, L., Green, D. and Gupta, R., "The Dry Carbonate Process: Carbon dioxide recovery from power plant flue gas," 9th Int. Conf. on Greenhouse Gas Control Technology, http://mit.edu/ghgt9/(2008).
  5. Nelson, T., Coleman, L., Green, D. and Gupta, R., "The Dry Carbonate Process: Carbon Dioxide Recovery from Power Plant Flue Gas," 7th Annual Conference on Carbon Capture & Sequestration, May, Pittsburgh, USA(2008).
  6. Yi, C. K., Jo, S. H., Seo, Y. W., Moon, K. H. and Yoo, J. S., " $CO_2$ Capture Characteristics of Dry Sorbents in a Fast Fluidized Reactor," Stud. Surf. Sci. Catal., 159, 501-504(2006). https://doi.org/10.1016/S0167-2991(06)81643-5
  7. Yi, C. K., Jo, S. H. and Seo, Y. W., "The Effect of Voidage on $CO_2$ Sorption Capacity of K-based Sorbent in a Dual Circulating Fluidized Bed Process," J. Chem. Eng. Jap., 41(7), 691-694(2008). https://doi.org/10.1252/jcej.07WE064
  8. Seo, Y. W., Jo, S. H., Ryu, C. K. and Yi, C. K., "Effects of Water Vapor Pretreatment Time and Reaction Temperature on $CO_2$ Capture Characteristics of a Sodium-Based Solid Sorbent in a Bubbling Fluidized-Bed Reactor," Chemosphere, 69, 712-718(2007). https://doi.org/10.1016/j.chemosphere.2007.05.036
  9. Seo, Y. W., Jo, S. H., Ryu, C. K. and Yi, C. K., "Effect of Reaction Temperature on $CO_2$ Capture Using Potassium-Based Solid Sorbent in Bubbling Fluidized-Bed Reactor," J. Environ. Eng., 135(6), 473-477(2009). https://doi.org/10.1061/(ASCE)0733-9372(2009)135:6(473)
  10. Park, Y. C., Jo, S. H., Park, K. W., Park, Y. S. and Yi, C. K., "Effect of Bed Height on the Carbon dioxide Capture by Carbonation/ Regeneration Cyclic Operations Using Dry Potassium-Based Sorbents," Korean J. Chem. Eng., 26(3), 874-878(2009). https://doi.org/10.1007/s11814-009-0146-2
  11. Park, K. W., Park, Y. S., Park, Y. C., Jo, S. H. and Yi, C. K., "Study of $CO_2$ Carbonation-Regeneration Characteristics of Potassium- based Dry Sorbents According to Water Vapor Contents of Inlet Gas and Regeneration Temperature in the Cycle Experiments of Bubbling Fluidized-Bed Reactor," Korean Chem. Eng. Res., 47(3), 349-354(2009).
  12. Yi, C. K., Jo, S. H., Seo, Y. W., Lee, J. B. and Ryu, C. K., "Continuous Operation of the Potassium-Based Dry Sorbent $CO_2$ Capture Process with Two Fluidized-Bed Reactors," Int. J. Greenhouse. Gas. Control., 1, 31-36(2007). https://doi.org/10.1016/S1750-5836(07)00014-X
  13. Ryu, C. K., Lee, J., Eom, T. H., Baek, J. I., Eom, H. M. and Yi, C. K., " $CO_2$ Capture from Flue Gas using Dry Regenerable Sorbents," 8th International Conference on Green House Gas Control Technology Trondheim, Norway, CD-Rom(2006).
  14. Lee, J. B., Ryu, C. K., Baek, J. I., Lee, J. H., Eom, T. H. and Kim, S. H., "Sodium-based Dry Regenerable Sorbent for Carbon Dioxide Capture from Power Plant Flue Gas," Ind. Eng. Chem. Res., 47(13), 4465-4472(2008). https://doi.org/10.1021/ie0709638
  15. Lee, S. C. and Kim, J. C., "Dry Potassium-based Sorbents for $CO_2$ Capture," Catalysis Surveys from Asia, 11(4), 171-185(2007). https://doi.org/10.1007/s10563-007-9035-z
  16. Lee, S. C., Chae, H. J., Lee, S. J., Park, Y. H., Ryu, C. K., Yi, C. K. and Kim, J. C., "Novel Regenerable Potassium-based Dry Sorbents for $CO_2$ Capture at Low Temperatures," J. Mol. Catal. B-Enzym., 56, 179-184(2009). https://doi.org/10.1016/j.molcatb.2008.07.007
  17. Lee, S. C., Choi, B. Y., Lee, T. J., Ryu, C. K., Ahn, Y. S. and Kim, J. C., " $CO_2$ Absorption and Regeneration of Alkali Metal-based Solid Sorbents," Catal. Today, 111, 385-390(2006). https://doi.org/10.1016/j.cattod.2005.10.051
  18. Lee, S. C., Chae, H. J., Lee, S. J., Choi, B. Y., Yi, C. K., Lee, J. B., Ryu, C. K. and Kim, J. C., "Development of Regenerable MgO-based Sorbent Promoted with $K_2CO_3\;for\;CO_2$ Capture at Low Temperatures," Environ. Sci. Technol., 42, 2736-2741(2008). https://doi.org/10.1021/es702693c
  19. http://www.netl.doe.gov/technologies/carbon_seq/refshelf/project%20portfolio/2007/2007Roadmap.pdf.
  20. http://www.fe.doe.gov.
  21. Figueroa, J., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R., "Advances in $CO_2$ Capture Technology- The U.S. Department of Energy's Carbon Sequestration Program," Int. J. Greenhouse. Gas. Control., 2, 9-20(2008). https://doi.org/10.1016/S1750-5836(07)00094-1
  22. Choi, S., Drese, J. H. and Jones, C. W., "Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources," Chem Sus Chem, 2, 796-854(2009). https://doi.org/10.1002/cssc.200900036
  23. Przepiorski, J., Skrodzewiez, M. and Morawski, A. W., "High Temperature Ammonia Treatment of Activated Carbon for Enhancement of $CO_2$ Adsoption," Applied Surface Science, 225(1/4) 235-242(2004). https://doi.org/10.1016/j.apsusc.2003.10.006
  24. Pevida, C., Plaza, M. G., Arias, B., Fermoso, J., Rubiera, F. and Pis, J. J., "Nitrogen Enriched Solid Sorbents for $CO_2$ Capture," 2007 International Conference on Coal Science and Technology, paper 7C4, 6 Aug. London(2007).
  25. Veawab, A., Tontiwachwuthikul, P. and Chakma, A., Ind. Eng. Chem. Res. 38, 3917-3924(1999). https://doi.org/10.1021/ie9901630
  26. Satyapal, S., Filburn, T., Trela, J. and Strange, J., "Performance and Properties of a Solid Amine Sorbent for Carbon Dioxide Removal in Space Life Support Applications," Energy Fuels 15, 250-255(2001). https://doi.org/10.1021/ef0002391
  27. Birbara, P. J., Filburn, T. P. and Nalette, T. A., "Regenerable Solid Amine Sorbent," US Patent No. 5,876,488(1999).
  28. Birbara, P. J. and Nalette, T. A., "Regenerable Support Amine Plyol Sorbent," US Patent 5,492,683(1996).
  29. Xu, X., Song, C., Andresen, J., Miller, B. and Scaroni, A., "Novel Pilyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for $CO_2$ Capture," Energy Fuels, 16, 1463-1469(2002). https://doi.org/10.1021/ef020058u
  30. Ma, X., Wang, X. and Song, C., "The Second Generation of Nano- Porous "Molecular-Basket" Sorbents for $CO_2$ Capture from Flue Gas," The 25th Annual International Pittsburgh Coal Conference, Pittsburgh, PA(2008).
  31. Son, W. J., Choi, J. S. and Ahn, H. S., "Adsorptive Removal of Carbon Dioxide Using Polyetyleneimine-Loaded Mesoporous Silica Materials," Microporous Mesoporous Mater., 113, 31-40(2008). https://doi.org/10.1016/j.micromeso.2007.10.049
  32. Plaza, M. G., Pevida, C., Arenillas, A., Rubiera, F. and Pis, J. J., " $CO_2$ Capture by Adsorption with Nitrogen Enriched Carbons," Fuel, 86, 22042212(2007).
  33. Gray, M. L., Soong, Y., Champagne, K. J., Baltrus, J., Stevens, Jr. R. W., Toochinda, P. and Chuang, S. S. C., " $CO_2$ capture by Amineenriched Fly Ash Carbon Sorbents," Sep. Purif. Technol., 35, 31-36(2004). https://doi.org/10.1016/S1383-5866(03)00113-8
  34. Maroto-Valer, M. M., Tang, Z. and Zhang, Y., " $CO_2$ Capture by Activated and Impregnated Anthracites," Fuel Process. Technol., 86, 1487-1502(2005). https://doi.org/10.1016/j.fuproc.2005.01.003
  35. Maroto-Valer, M. M., Lu, Z., Tang, Z. and Zhang, Y., "Sorbents for $CO_2$ Capture from High Carbon Fly Ashes," Waste Management 28, 2320-2328(2008). https://doi.org/10.1016/j.wasman.2007.10.012
  36. Dillon, E. P., Crouse, C. A. and Barron, A. R., "Synthesis, Characterization, and Carbon Dioxide Adsorption of Covalently Attached Polyethyleneimine-Functionalized Single-Wall Carbon Nanotubes," ACS Nano 2, 156-164(2008). https://doi.org/10.1021/nn7002713
  37. Siriwardane, R., Robinson, C. and Stevens, R. Jr., "Solid Sorbents for $CO_2$ Capture from Post-Combustion and Pre-Combustion Gas Streams," 2007 International Conf. on Coal Science and Technology, 8C4, 7 CD-Rom, Aug., London(2007).
  38. Gray, M. L., Champagne, K. J., Fauth, D., Baltrus, J. P. and Pennline, H., "Performance of Immobilized Tertiary Amine Solid Sorbents for the Capture of Carbon Dioxide," Int. J. Greenhouse Gas Control, 2, 3-8(2008). https://doi.org/10.1016/S1750-5836(07)00088-6
  39. Drage, T. C., Arenillas, A., Smith, K. M., Pevida, C., Piippo, S. and Snape, C. E., "Preparation of Carbon Dioxide Adsorbents from the Chemical Activation of Urea-Formaldehyde and Melamine- Formaldehyde Resin," Fuel, 86(1/2), 22-31(2007). https://doi.org/10.1016/j.fuel.2006.07.003
  40. Arenillas, A., Drage, T. C., Smith, K. and Snape, C. E., " $CO_2$ Removal Potential of Carbons Prepared by Co-Pyrolysis of Sugar and Nitrogen Containing Compounds", J. Anal. Appl. Pyrolysis., 74(1/2), 298-306(2005).
  41. Li, H., Eddaoudi, M., O'keeffe, M. and Yaghi, O. M., "Design and Synthesis of An Exceptionally Stable and Highly Porous Metal-organic Framework," Nature, 402, 276(1999). https://doi.org/10.1038/46248
  42. Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'keeffe, M. and Yaghi, O. M., "Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage," Science, 295, 469-472(2002). https://doi.org/10.1126/science.1067208
  43. Millward, A. R. and Yaghi, O. M., "Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature," J. Am. Chem. Soc. 127, 17998-17999(2005). https://doi.org/10.1021/ja0570032
  44. Arstad, B., Fjellvag, H., Kongshaug, K. O., Swang, O. and Blom, R., "Amine Functionalised Metal Organic Frameworks (MOFs) as Adsorbents for Carbon Dioxide," Adsorption, 14, 755-762(2008). https://doi.org/10.1007/s10450-008-9137-6
  45. Abanades, J. C., Rubin, E. S. and Anthony, E. J., "Sorbent Cost and Performance in $CO_2$ Capture Systems," Ind. Eng. Chem. Res., 43(13), 3462-3466(2004). https://doi.org/10.1021/ie049962v
  46. Abanades, J. C., Grasa, G., Alonso, M., Rodriguez, N., Anthony, E. J. and Romeo, L. M., "Cost Structure of a Postcombustion $CO_2$ Capture System Using CaO," Environ. Sci. Technol., 41(15), 5523-5527(2007). https://doi.org/10.1021/es070099a
  47. Chang, A. C. C., Steven, S., Chuang, C., Gray, M. L. and Soong, Y., "In-Situ Infrared Study of $CO_2$ Adsorption on SBA-15 Grafted with Gamma-(aminopropyl)triethoxysilane," Energy Fuels, 17, 468-473(2003). https://doi.org/10.1021/ef020176h
  48. Leal, O., Bolivar, C., Ovalles, C., Garcia, J. and Espidel, Y., "Reversible Adsorption of Carbon Dioxide on Amine Surface-Bonded Silica Gel," Inorg. Chimica. Acta 240, 183-189(1995). https://doi.org/10.1016/0020-1693(95)04534-1
  49. Siriwardane, R., Shen, M., Fisher, E. and Poston, J., "Adsorption of $CO_2$ on Molecular Sieves and Activated Carbon," Energy Fuels, 15(2), 279-284(2001). https://doi.org/10.1021/ef000241s
  50. Siriwardane, R. V., Shen, M. S. and Fisher, E. P., "Adsorption of $CO_2,\;N_2,\;O_2$ on Natural Zeolites," Energy Fuels, 17(3), 571-576 (2003). https://doi.org/10.1021/ef020135l
  51. Siriwardane, R. V., Shen, M. S. and Fisher, E. P., "Adsorption of $CO_2$ on Zeolites at Moderate Temperatures", Energy Fuels, 19(3), 1153-1159(2005). https://doi.org/10.1021/ef040059h
  52. Siriwardane, R. V., Robinson, C., Shen, M. and Simony, T., "Novel Regenerable Sodium-Based Sorbents for $CO_2$ Capture at Warm Gas Temperatures," Energy Fuels, 21(4), 2088-2097(2007). https://doi.org/10.1021/ef070008v
  53. Birbara, P. J., Filburn, T. P., Harvey, M. H. and Nalette, T. A., 2006. US Patent 6,364,938.
  54. Liang, Y., Harrison, D. P., Gupta, R. P., Green, D. A. and McMichael, W. J., "Carbon Dioxide Capture using Dry Sodium-based Sorbents," Energy Fuels, 18(2), 569-575(2004). https://doi.org/10.1021/ef030158f