Entrained-Flow Coal Water Slurry Gasification

분류층 습식 석탄가스화 기술

  • Ra, HoWon (Clean Fossil Fuel Research Center, Korea Institute of Energy Research) ;
  • Lee, SeeHoon (Clean Fossil Fuel Research Center, Korea Institute of Energy Research) ;
  • Yoon, SangJun (Clean Fossil Fuel Research Center, Korea Institute of Energy Research) ;
  • Choi, YoungChan (Clean Fossil Fuel Research Center, Korea Institute of Energy Research) ;
  • Kim, JaeHo (Clean Fossil Fuel Research Center, Korea Institute of Energy Research) ;
  • Lee, JaeGoo (Clean Fossil Fuel Research Center, Korea Institute of Energy Research)
  • 라호원 (한국에너지기술연구원 청정화석연료연구센터) ;
  • 이시훈 (한국에너지기술연구원 청정화석연료연구센터) ;
  • 윤상준 (한국에너지기술연구원 청정화석연료연구센터) ;
  • 최영찬 (한국에너지기술연구원 청정화석연료연구센터) ;
  • 김재호 (한국에너지기술연구원 청정화석연료연구센터) ;
  • 이재구 (한국에너지기술연구원 청정화석연료연구센터)
  • Received : 2009.11.13
  • Accepted : 2009.12.15
  • Published : 2010.04.30

Abstract

Coal gasification process, which had developed originally to convert coal from hydrogen and carbon monoxide, has used and developed in many countries because of environmental advantages such as carbon dioxide storage, decrease of pollutants and so on. Generally entrained-flow gasification process using pulverized coal under $75{\mu}m$ is used in Integrated Gas Combined Cycle(IGCC) because of easy scale up and high efficiency of energy conversion. Especially entrained-flow gasifers with coal water slurry have been used in many applications due to its fully developed technologies. In this paper, several technologies for coal-water slurry gasification that involves slurry preparation, burner, gasifier, slag melting and numerical simulation for plant design and operation were investigated. Entrained-flow gasification with coal water slurry can be used for synfuel production, SNG, chemicals as well as IGCC. To develop hybrid gasification process and use different types of coal, it is necessary to develop new technologies that will increase efficiency of the process.

석탄으로부터 수소, 일산화탄소 등의 가스 연료를 생산하기 위하여 개발된 석탄 가스화 공정은 이산화탄소 저장, 환경 유해 물질 저감 등의 우수성으로 인하여 최근 세계 각국에서 앞다투어 개발에 나서고 있다. $75{\mu}m$ 이하의 미분탄을 이용하는 분류층 가스화 공정은 용량의 대형화가 쉽고, 에너지 전환 효율이 우수하여 석탄가스화복합발전(IGCC) 등에 널리 이용되고 있다. 특히 석탄슬러리를 원료로 사용하는 습식 분류층 가스화 공정은 기술적으로 성숙되어 가장 많이 보급되고 있다. 본 논문에서는 습식 분류층 가스화 공정을 이루는 석탄전처리, 버너, 가스화기, 슬래그용융, 가스화 운전 특성과 설계 및 해석을 위한 수치모사 등의 요소기술 개발 현황을 고찰하였다. 습식 석탄가스화는 IGCC 플랜트에서 뿐만 아니라 합성석유, SNG, 화학원료 제조용으로 활용될 수 있으며 융합 공정, 연료 다변화 등에 대응하기 위하여 요소기술별 추가적인 기술개발이 이루어져야 할 것으로 판단된다.

Keywords

References

  1. Takematsu, T. and Maude, C., "Coal Gasification for IGCC Power Generation," IEACR/37, March(1991).
  2. http://www.gasification.org.
  3. Higman, C. and van der Burgt, M., "Gasification," Elsevier (2003).
  4. Knoef, H.A.M., "Handbook Biomass Gasification," Gasnet(2005).
  5. Kim, S. D., "Coal Utilization and Conversion Technologies," Minumsa(1986).
  6. Yang, S. M. and Park, W. H., "Coal Gasification Processes and Comments on Economics," HWAHAK KONGHAK, 17(4), 305-314 (1979).
  7. Ji, P. S., Park, T. J. and Kim, J. H., "Integrated Coal Gasification Combined Cycle Technology," Chem. Ind. Technol., 11(2), 76-86(1993).
  8. Lee, J. G. and Lee, S. H., "Coal Gasification Processes and R&D Status," Korean Ind. Chem. News., 11(1), 26-37(2008).
  9. Senzou Yanomem et al., "Development of Coal Gasification Technology," IHI Engineering Review, 25, 1-69(1992).
  10. Roh, N. S., Sin, D. H. and Kim, G. H., "Atomization Characteristics of Coal-Water Mixture Fuel," Energy Engg., 3(2), 130(1994).
  11. Roh, N. S., Kim, G. H. and Kim, D. C., "Rheological Characteristics of Coal-Water Mixture Fuel and Pressure Losses in Pipe Flow," HWAHAK KONGHAK, 33(3), 282-291(1995).
  12. DeVault, R. F., Shiao, S.Y., Warchol, J. J. and Vecci, S. J., "Characterization of Coals for Slurryability," Technical Paper, RDTPA 85-34, Babcock & Wilcox Co., 15.(1985).
  13. Ji, Q., Hao, A., Sun, C. and Wu, J., "Coal Properties and Slurryability of Shenmu Coal," Proc. of the 17th Int. Conf. on Coal Utilization & Slurry Technologies, Clearwater, Fla., April 28-May 1, 873-883(1992).
  14. Al Taweel, A. M., Fadaly, O. and Kwak, J. C. T., "Influence of Coal Characteristics on the Rheology and Stability of Coal Slurry Fuels," Proc. of the 35th Can. Chem. Eng. Conf. C. S. Ch. E., Ottawa, Ontario, 1, 266-277(1985).
  15. Nishino, J., Kiyama, K. and Seki, M., "Relation of Viscosity Characteristics in CWM to Coal Rank," J. Chem. Eng. Japan, 22(2), 162(1989). https://doi.org/10.1252/jcej.22.162
  16. Shuquan, Z. and Zuna, W., "The Influence of Oxygen Functional Groups in Coal on CWS Characteristics," Proc. of the 16th Int. Conf. on Coal & Slurry Technologies, Clearwater, Fla., April 22-25, 447-458(1991).
  17. Roh, N. S., Sin, D. H., Kim, G. H. and Kim, D. C., "Preparation and Rheological Characteristics of Coal-Water Mixture Fuel," Energy Engg., 4(2), 163-189(1995).
  18. Yoon, S. J., Choi, Y. J. and Lee, J. G., "The Effect of Additive Chemicals on the Viscosity of Coal-petroleum Coke-water Slurry Fuel for a Gasification Process", KJChE, 26(5), 1259-1264(2009). https://doi.org/10.2478/s11814-009-0223-6
  19. Wilson, W. G. et al., "Low-rank Coal Slurries for Gasification," Fuel Process. Technol., 15, 157-172(1987). https://doi.org/10.1016/0378-3820(87)90042-7
  20. Kosuke Aiuchi et al., "A Pre-heating Vaporation Technology of Coal-water-slurry for the Gasification Process," Fuel Process. Technol., 88, 325-331(2007). https://doi.org/10.1016/j.fuproc.2004.10.010
  21. Kalmanovitch, D. P., Sanyal, A. and Williamson, J., "A New Approach to Predicting the Slagging Propensity of a Coal Based on High Temperature Equilibria," 3rd. International conference on slagging and fouling due to impurities in combustion gases, Cupper Mountain, Colorado, USA, 537-553(1984).
  22. Ashizawa, M., "Development of High-performance Coal Gasification Technology for High Ash Fusion Coals by Flux Addition Method," CRIEPI report EW90003(1990).
  23. Hirato, M., Ninomiya, Y. and Asami, M., "Effect of CaO Addition on Ash Fusion Behavior," J. Fuel Society of Japan, 65, 670 (1986). https://doi.org/10.3775/jie.65.8_670
  24. Hurst, H. J., Novak, F. and Patterson, J. H., "Prediction of Calcium Carbonate Needed for Successful Slag Tapping of Some Astralian Coals in a Slagging Gasifier," 6th Australian Coal Science Conference, Newcastle, 222(1994).
  25. Lee, J. G., Kim, J. H., Lee, H. J., Park, T. J., Kim, S. D. and Kim, J. J., "Effects of $CaCO_3$ Addition As A Flux On the Melting of Ash and Slag," Energy Engg., 4(3), 372-378(1995).
  26. Watt, J. D. and Fereday, F., "The Flow Properties of Slags Formed from the Ashes of British Coals: Part 1. Viscosity of Homogeneous Liquid Slags in Relation to Slag Composition," J. Inst. Fuel, 42, 99(1969).
  27. Hoy, H. R., Robert, A. G. and Wilkins, D. M., "Behavior of Mineral Matter in Slagging Gasification Processes," I.G.E.J., Comm. 672, 444(1965).
  28. Riboud, P. V., Roux, Y., Lucas, D. and Gaye, H., "Improvement of Continuous Casting Powders," Fachberichte Huttenpraxis Metallweiter Verarbeitung, 19, 859(1981).
  29. Urbain, G., Cambier, F., Deletter, M. and Anseau, M. R., "Viscosity of Silicate Melts," Trans. Brit. Ceramic Soc., 80, 35(1981).
  30. Jung, B. J. and Schobert, H. H., "Improved Prediction of Coal Ash Slag Viscosity by Thermodynamic Modeling of Liquid-phase Composition," Energy Fuel, 6, 387(1992). https://doi.org/10.1021/ef00034a007
  31. Mills, K. C., "Slags - a Computer Program for Calculating Physio - Chemical Properties of Slags," National Physical Laboratory, Teddington, UK(1991).
  32. Groen, J. C., Brooker, D. D., Welch, P. J. and Oh, M. S., "Gasification Slag Rheology and Crystallization in Titanium-rich, Ironcalcium-aluminosilicate Glasses", Fuel Process. Technol., 56, 103-127(1998). https://doi.org/10.1016/S0378-3820(98)00063-0
  33. Kim, H. B. and Oh, M., "Changes in Microstructure of a High Chronia Refractory Due to Interaction with Infiltrating Coal Slag in a Slagging Gasifier Environment," Ceramics International, 34, 2107-2116(2008). https://doi.org/10.1016/j.ceramint.2007.08.010
  34. Sowa, W., "The Effect of Injector Design on the Performance of the Bringham Young University," Ph.D. Thesis, Bringham Young University(1987).
  35. Sowa, W., "The Sensitivity of Entrained-flow Coal Gasification Diffusion Burners to Changes in Geometry," Fuel, 71, 593-604 (1992). https://doi.org/10.1016/0016-2361(92)90159-L
  36. Erdmann, C., Liebner, W. and Schlichting, H., "MPG Lurgi Multi Purpose Gasification: Initial Operating Experience at a VR-based Ammonia Plant," IchemE Gasification, Noordwijk, The Netherlands, 8-10 April(2002).
  37. Toporov, H. P., Stadler, H., Tschunko, S., Forster, M. and Kneer, R., "Development of an Oxycoal Swirl Burner Operating at Low $O_2-concentrations$," Fuel, 88, 1269-1274(2009). https://doi.org/10.1016/j.fuel.2008.12.025
  38. Lee, H. J., Park, T. J., Kim, J. H., Lee, J. G. and Ahn, D. H. "Study on Flow Characteristics in Entrained Flow Gasifier with High Speed Impinging Jet," Transactions of the KSME, 20(5), 1735(1996).
  39. Yoon, S. J., Choi, Y. C., Hong, J. C., Ra, H. W. and Lee, J. G., "Gasification of Coal-Petroleum Coke-Water Slurry in a 1 ton/d Entrained Flow Gasifier," Korean Chem. Eng. Res., 46(3), 561-566 (2008).
  40. Choi, Y. C., Liu, X. Y., Park, T. J., Kim, J. H. and Lee, J. G., "Numerical Study on the Coal Gasification Characteristics in an Entrained Flow Coal Gasifier," Fuel, 15, 2193-2201(2001).
  41. Choi, Y. C., Liu, X. Y., Park, T. J., Kim, J. H. and Lee, J. G., "Numerical Analysis of the Flow Field inside an Entrained-Flow Gasifier," Korean J. Chem. Eng., 18(3), 376-381(2001). https://doi.org/10.1007/BF02699181
  42. Liu, X. Y., "Numerical Simulation of Coal Gasification," Postdoc report, KIER(1999).
  43. Wen, C. Y. and Chaung, T., "Entrained Coal Gasification Modeling," Indeng Chem process Des Dev 18.(1979).
  44. Brwon, B. W., Smoot, L. D., Smith, P. J. and Hedman, P. O., "Measurement and Prediction of Entrained-flow Gasification Process," AIChe J, 34, 435(1988). https://doi.org/10.1002/aic.690340311
  45. Watanabe, H. and Otaka, M., "Numerical Simulation of Coal Gasification in Entrained Flow Coal Gasifier," Fuel, 85, 1935-1943(2006). https://doi.org/10.1016/j.fuel.2006.02.002
  46. Chui, E.H. et al., "Simulation of Entrained Flow Coal Gasification," Energy Procedia, 1, 503-509(2009). https://doi.org/10.1016/j.egypro.2009.01.067
  47. Jiradilok, V. et al., "Computation of Turbulence and Dispersion of Cork in NETL Riser," Chem. Eng. Sci., 63, 2135-2148(2008). https://doi.org/10.1016/j.ces.2008.01.019
  48. Phillips J., "Gasification Combined Cycles 101", 2005 GTC(2005).
  49. Bissett, L. A., "An Engineering Assessment of Entrainment Gasification," US DOE, MERC/R1-7812(1978).
  50. Ryu, S. O., Kim, J. H., Lee, H. J., Lee, J. G., Park, T. J., Ahn, D. H. and Park, H. Y., "Gasification Study of Datong Coal in a Bench Scale Unit of Entrained Flow Gasifier," Energy Engg. 6(1), 96 (1997).
  51. Park, T. J., Kim, J. H., Lee, J. G., Hong, J. C., Kim, Y. G. and Choi, Y. C., "Experimental Study on the Characteristics of Coal Gasification by 1 T/D BSU Coal-slurry Entrained Gasifier," Energy Engg., 8(4), 553-559(1999).
  52. Choi, Y. C., Park, T. J., Kim, J. H., Lee, J. G., Hong, J. C. and Kim, Y. G., "Experimental Studies of 1Ton/Day Coal Slurry Feed Type Oxygen Blown, Entrained Flow Gasifier", Korean J. Chem. Eng., 18(4), 493-498(2001). https://doi.org/10.1007/BF02698296