Treatment of Oil Contaminated Groundwater Using DAF and Fenton Oxidation Process

DAF와 펜톤 산화 공정을 이용한 유류 오염 지하수 처리

  • 이채영 (수원대학교 공과대학 토목공학과)
  • Received : 2010.08.28
  • Accepted : 2010.09.15
  • Published : 2010.10.01

Abstract

The oil spill occurred frequently due to probably the increased consumption of oil as the energy source and the raw materials of various chemicals. For the treatment of oil contaminated groundwater, DAF(Dissolved Air Flotation) is being used but the removal efficiency is low. Therefore it is necessary to reduce the free phase oil, oil-in water type or water-in oil type emulsified oil, and soluble oil which are the main sources of contaminated groundwater. In this study, treatment of contaminated groundwater was performed using the Fenton oxidation process. The optimum conditions for the removal of THP(Total Petroleum Hydrocarbon) were 3 of pH, 25mM of $H_2O_2$ concentration and 25mM of $Fe^{2+}$ concentration. THP and COD(Chemical Oxygen Demand) concentrations decreased less than 1.5mg/L and 40.0mg/L in 7 minutes using DAF and Fenton oxidation process. However it is necessary to install the settling basin as the sludge concentration increased approximately 5 times.

에너지원 및 다양한 화학제품의 원료로 유류의 소비량이 증가함에 따라 유류의 유출사고가 빈번하게 발생하고 있다. 유류오염 지하수 처리를 위해 용존공기부상법이 사용되어지고 있으나 용해성 기름을 효과적으로 제거하지 못하고 있는 실정이다. 따라서 지하수내 주오염원인 자유상 유류와 친수성(oil-in water) 또는 친유성 에멜젼(water-in oil) 상태의 기름과 용해성 기름을 효과적으로 저감하는 것이 필요하다. 본 연구에서는 용존공기부상법에 펜톤 산화 공법을 사용하여 효과적인 유류 오염 지하수 처리를 연구하였다. 펜톤 실험 결과 TPH(Total Petroleum Hydrocarbon) 제거를 위한 최적 조건은 pH 3, $H_2O_2$ 주입농도 25mM과 $Fe^{2+}$ 주입농도 25mM으로 나타났다. DAF와 펜톤 산화 실험을 수행한 결과 7분내에 TPH(Total Petroleum Hydrocarbon)와 COD(Chemical Oxygen Demand) 농도가 각각 1.5mg/L와 40.0mg/L 이하로 감소하는 것으로 나타났다. 하지만 펜톤 산화 반응으로 인하여 슬러지 농도가 약 5배 가량 증가하여 후단에 침전조를 설치하는 것이 바람직하다.

Keywords

References

  1. 이채영, 장영수(2010), DAF와 혼화응집공정을 이용한 현탁성 고형물 함유 유류 오염 지하수 처리, 한국지반환경공학회지, Vol. 11, No. 8, pp. 25-32.
  2. 임명희, 손영규, 윤준기, 김지형(2006), 펜톤 산화공법을 통해 디젤로 오염된 토양 처리 시에 과산화수소와 디젤의 주입비 영향에 관한 연구, 2006년도 춘계학술발표회 논문집, 한국지하수토양환경학회, pp. 37∼40.
  3. Eaton, A.D., Clesceri, L.S., Rice, E.W. and Greenberg, A.E. (2005), Standard Methods for the Examination of Water and Wastewater, APHA., AWWA., WPCF., 21th ed., Washington, DC. pp. 5-16-5-18.
  4. Gogate, P.R. and Pandit, A.B.(2004), Areview of Imperative Technologies for Wastewater Treatment I: Oxidation Technologies at ambient conditions, Advances in Environmental Research, Vol. 8, No. 3-4, pp. 501-551. https://doi.org/10.1016/S1093-0191(03)00032-7
  5. Haber, F. and Weiss, J.(1934), The Catalytic Decomposition of Hydrogen Peroxide by Iron Salt, Proceedings of the Royal Society A, Mathematical and Physical Sciences, London, Vol. 147, pp. 332-351.
  6. Huang, C.P., Dong, C. and Tang, Z.(1993), Advanced Chemical Oxidation: Its Presrnt Role and Potential Future in Hazardous Waste Treatment, Waste Management, Vol. 13, No. 5-7, pp. 361-377. https://doi.org/10.1016/0956-053X(93)90070-D
  7. Kang, Y.W., Cho, M.J. and Hwang, K.Y.(1999), Correction of Hydrogen Peroxide Interference on Standard Chemical Oxygen Demand Test, Water Research, Vol. 33, No. 5, pp. 1247-1251. https://doi.org/10.1016/S0043-1354(98)00315-7
  8. Metelitsa, D.I.(1971), Mechanisms of the Hydroxylation of Aromatic Compounds, Russian Chemical Reviews, Vol. 40, No. 7, pp. 563-580. https://doi.org/10.1070/RC1971v040n07ABEH001939
  9. Steiner, N. and Gec, R.(1992), Plant-experience Using Hydrogenperoxide for Enhanced Fat Flotation and BOD Removal, Environmental Progress, Vol. 11, No. 4, pp. 261-264. https://doi.org/10.1002/ep.670110412
  10. Talinli, I. and Anderson, G.K.(1992), Interference of Hydrogen Peroxide on the Standard COD Test, Water Research., Vol. 26, No. 1, pp. 107-110. https://doi.org/10.1016/0043-1354(92)90118-N
  11. Watts, R.J., Udell, M.D., Rauch, P.A. and Leung, S.W.(1990), Treatment of pentachlorophenol-contaminated soils using Fenton's reagent, Hazardous Waste and Hazardous Materials, Vol. 7, No. 4, pp. 335-345. https://doi.org/10.1089/hwm.1990.7.335
  12. Whang, L.M., Liu, P.W., Ma, C.C. and Cheng, S.S.(2008), Application of Biosurfactants, Rhamnolipid, and Durfactin, for Enhanced Biodegradation of Diesel-Contaminated Water and Soil, Journal of Hazardous Materials, Vol. 151, No. 1, pp. 155-163. https://doi.org/10.1016/j.jhazmat.2007.05.063