Modelling and Simulation of H2 separation in Pd Membrane System with Co-current and Current-current Flow

병류와 향류 흐름에서 수소분리를 위한 Pd 분리막 시스템의 모델링 및 모사

  • Yi, Yong (Department of Chemical Engineering, Hanbat National University) ;
  • Noh, Seunghyo (Department of Chemical Engineering, Hanbat National University) ;
  • Oh, Min (Department of Chemical Engineering, Hanbat National University)
  • 이용 (한밭대학교 화학공학과) ;
  • 노승효 (한밭대학교 화학공학과) ;
  • 오민 (한밭대학교 화학공학과)
  • Received : 2010.04.30
  • Accepted : 2010.07.14
  • Published : 2010.10.31

Abstract

In this paper, we carried out CFD modelling and simulation for the membrane system to separate H2 gas from the multi-component feed gas. The membrane system is of the annulus tubular type consisting of the external lumen side for the feed gas and the internal permeation side for the sweeping gas. The operating temperature and pressure of the lumen side inlet flow are $374^{\circ}C$ and 7 bar respectively and those of the sweeping gas are $374^{\circ}C$ and 3 bar, and considering these conditions, Pd membrane system was employed. CFD simulations were performed for the co-current flow and counter-current flow membrane system based on the flow directions between the feed and the sweeping gas. Comparisons and discussions were made for the H2 partial pressure, H2 mole fraction and H2 flux for both cases. Furthermore, we executed CFD simulations for the each case of the various inlet flow rates of the feed gas at the lumen side. Accordingly, we reviewed the effects of the flow rate and residence time on the performance of the membrane system.

본 논문에서는 다량의 수소를 포함한 다성분계 원료가스로부터 수소를 분리해 내는 분리막 시스템에 대하여 CFD 모델링과 모사를 수행하였다. 분리막 시스템은 환형 실린더 타입으로 원료가스의 유입을 위한 외부 lumen side와 sweeping gas가 유입되는 내부 permeation side로 구성된다. Lumen side의 운전온도와 압력은 $374^{\circ}C$, 7 기압 permeation side의 sweeping gas의 도입 온도와 압력은 $374^{\circ}C$, 3기압이며, 이러한 조건에서 운전이 가능한 Pd 분리막을 사용하였다. Sweeping gas의 흐름 방향에 따른 향류 및 병류 흐름에 대하여 각각 CFD 모사를 수행하였으며 수소 몰분율, 수소분압, 수소 플럭스 등에 대하여 결과를 비교하였다. 또한 lumen side의 원료가스 도입유속을 변화시켜 모사를 수행하고, 이에 따른 막분리 시스템의 효율을 비교하고 이에 대하여 고찰하였다.

Keywords

References

  1. Ravanchi, M. T., Kaghazchi, T. and Kargari, A., "Application of Membrane Separation Processes in Petrochemical Industry,"Desalination, 235,199-244(2009). https://doi.org/10.1016/j.desal.2007.10.042
  2. Mallada, R. and Menendez, M., "Inorganic Membranes: Synthesis, Characterization and Application," Elsevier, 2008.
  3. Pandey, P. and Chauhan, R. S., "Membranes for Gas Separation," Prog. Polym. Sci., 26, 853-893(2001). https://doi.org/10.1016/S0079-6700(01)00009-0
  4. Chiappetta, G., Clarizia, G. and Drioli, E., "Analysis of Safety Aspects in a Membrane Reactor," Desalination, 2005.
  5. Barbieri, G., Brunetti, A., Tricoli, G. and Drioli, E., "An Innovation Configuration of a Pd-based Membrane Reactor for the Production of Pure Hydrogen Experimental Analysis of Water Gas Shift," J. Power Sources., 2008.
  6. Min, O., Junyong Park, Seunghyo Noh, and Seung Uk Hong, "CFD Simulation of Pd-Ag Membrane Process for $CO_2$ separation," KSIEC, 2009.
  7. Rahimpour, M. R., Mostafazadeh, A. K. and Barmaki, M. M., "Application of Hydrogen-permselective Pd-based Membrane in an Industrial Single-type Methanol Reactor in the Presence of Catalyst Deactivation," Fuel Processing Technol., 2008.
  8. Ferziger, J. H. and Peric, M., "Computational Methods for Fluid Dynamics," Springer, 2002.
  9. Coroneo, M., Montante, G., Baschetti, M. G. and Paglianti, A., "CFD Modeling of Inorganic Membrane Modules for Gas Mixture Separation," Chem. Eng. Sci., 2008.
  10. Fluent, Fluent 6.3 User's Guide, Fluent Incorporated (2008).
  11. Lippman, S. B., Lajoie, J. and Moo, B. E., "C++ PRIMER," Addison Wesley, 2007.
  12. Basile, A., Tosti, S., Capannelli, G., Vitulli, G., Iulianelli, A., Gallucci, F. and Drioli, E., "Co-current and Counter-current Modes for Methanol Steam Reforming Membrane Reactor: Experimental study," Catal. Today., 2006.
  13. Basile, A., Paturzo, L. and Gallucci, F., "Co-current and Countercurrent Modes for Water Gas Shift Membrane Reactor," Catal. Today., 2003.
  14. Chiappetta, G., Clarizia, G. and Drioli, E., "Design of An Integrated Membrane System for a High Level Hydrogen Purification," Chem. Eng. J., 2006.