도시유역에서 공간적으로 분포된 소규모 강우유출수 관리시설의 최적설치위치선정

Best Site Identification for Spatially Distributed On-Site Stormwater Control Devices in an Urban Drainage System

  • 김상단 (부경대학교 환경공학과) ;
  • 임용균 (부산대학교 사회환경시스템공학과) ;
  • 김진관 (고려대학교 건축사회환경시스템공학과) ;
  • 강두기 ((주) 웸스) ;
  • 서성철 (한국환경공단 수생태시설처) ;
  • 이재관 (국립환경과학원 낙동강 물환경연구소)
  • Kim, Sangdan (Department of Environmental Engineering, Pukyong National University) ;
  • Lim, Yong Kun (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Jin Kwan (Department of Civil and Environmental Engineering, Korea University) ;
  • Kang, Dookee (Water & Environmental Management System Corporation (WEMS)) ;
  • Seo, Seongcheol (Department of Ecosystem Facility, Korea Environment Corporation) ;
  • Lee, Jae Kwan (Nakdong River Environmental Research Center, National Institute of Environmental Research)
  • 투고 : 2010.08.12
  • 심사 : 2010.09.07
  • 발행 : 2010.11.30

초록

Spatially distributed on-site devices such as bioretentions and bioboxfilters are becoming more common as a means of controlling urban stormwater quality. One approach to modeling the cumulative catchment-scale effects of such devices is to resolve the catchment down to the scale of a land parcel or finer, and then to model each device separately. The focus of this study is to propose a semi-distributed model for simulating urban stormwater quantity and identifying best sites for spatially distributed on-site stormwater control devices in an urban drainage system. A detailed model for urban stormwater improvement conceptualization simulation is set up for a $0.9342km^2$.

키워드

참고문헌

  1. 장수형, 이지호, 유철상, 한수희, 김상단(2008). 우수유출저감 시설의 최적위치 결정. 수질보전 한국물환경학회지, 24(2), pp. 180-184.
  2. 전지홍, 최동혁, 김태동(2009) . 지속가능한 도시개발을 위한 LID평가모델(LlDMOD)개발과 수질오염총량제에 대한 적용성평가. 수질보전 한국물환경학회지, 25( 2), pp. 230-238.
  3. 최치현, 김호성, 김상단(2010). 유황곡선 보전을 위한 저류형 강우유출수 제어설비 설계. 학술발표회 논문집, 한국수자원학회, P-77.
  4. Behera, P. K., Adams, B. J., and Li, J. Y. (2006). Runoff quality analysis of urban catchments with analytical probabilistic models. Journal of Water Resources Planning and Management, 132, pp. 4-14. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:1(4)
  5. Bosley, E. K. (2008). Hydrologic evaluation of low impact development using a continuous, spatially-distributed model. MA thesis, Virginia Polytechnic Institute and State Univ., Va.
  6. Carter, T. and Jackson, C. R. (2007). Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plann., 80, pp. 84-94. https://doi.org/10.1016/j.landurbplan.2006.06.005
  7. Corbin. R. A. (1999). Standard Handbook of Environmental Engineering, McGraw-Hill. 2ed.
  8. Elliott, A. H., Trowsdale, S. A., and Wadhwa, S. (2009). Effect of aggregation of on-site storm-water control devices in an urban catchment model. ASCE Journal of Hydrologic Engineering, 14, pp. 975-983.
  9. Elliott, S., Ibbitt, R., Woods, R., Spigel, B., and Shankar, U. (2001). Stormwater modelling for biological flows and distributed flow controls. Proc., 2nd South Pacific Stormwater Conf., New Zealand Water and Wastes Association, Auckland, New Zealand, pp. 237-247.
  10. Jang. S. H., Cho, M., Yoon, J., Yoon. Y., Kim, S., Kim, G., Kim, L., and Aksoy, H. (2007). Using SWMM as a tool for hydrologic impact assessment. Desalination, 212, pp. 344-356. https://doi.org/10.1016/j.desal.2007.05.005
  11. Kaini, P., Artita, K., and Nicklow, J. W. (2007). Evaluating optimal detention pond locations at a watershed scale. World Environmental and Water Resources Congress 2007, K. C. Kabbes (ed.), ASCE, New York, pp. 1-8.
  12. Kertesz, R., Heaney, J., and Sansalone, J. (2007). Disaggregated modeling for urban hydrologic controls. World Environmental and Water Resources Congress 2007, K. C. Kabbes (ed.), ASCE. New York, pp. 1-11.
  13. Maryland Department of the Environment (2000). Maryland stormwater design manual, Vols. 1 and 2. Center for Watershed Protection and the Maryland Dept. of the Environment, Baltimore, Md.
  14. O'Callaghan, J. F. and Mark. D. M. (1984). The extraction of drainage from digital elevation data. Comput. Vis. Graph. Image Process, 28, pp. 328-344.
  15. Perez-Pedini, C., Limbrunner, J., and Vogel, R. (2005). Optimal location of infiltration-based best management practices for storm water management. J. Water Resour. Plan. Manage., 131, pp. 441-448. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:6(441)
  16. Prince George's County (1999). Low-impact development hydrologic analysis. Prince George's County, MD Department of Environmental Resources.
  17. Segarra-Garcia. R. and Loganathan, V. G. (1992). Storm-water detention storage design under random pollutant loading. J. Water Resour. Plan. Manage., 1185, pp. 475-491.
  18. Soil Conservation Service (1986). Urban hydrology for small watersheds. Technical Release 55, U.5. Dept. of Agriculture, Washington. D.C.
  19. Wanielista, M., Kersten, R., and Eag1in, R. (1997). Hydrology Water Quantity and Quality Control. John Wiley & Sons. 2nd ed.
  20. Warwick, J. J. and Litchfield, J. (1993). Impact of spatial and temporal data limitations on the modeling of runoff quantity and quality. Water management in the '90s: A time for innovation. K. Hon (ed.), ASCE, New York, pp. 862-865.