Daphnia magna와 Moina macrocopa를 이용한 금강수계 하천퇴적물 생태독성 모니터링

Toxicity Monitoring of River Sediments in the Geum River Basin using Daphnia magna and Moina macrocopa

  • 조혜윤 (고려대학교 환경생태공학부) ;
  • 유지수 (고려대학교 환경생태공학부) ;
  • 한영석 (인천대학교 생명과학부) ;
  • 한태준 (인천대학교 생명과학부) ;
  • 김상훈 (국립환경과학원) ;
  • 정진호 (고려대학교 환경생태공학부)
  • Cho, Hyeyoon (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Yoo, Jisu (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Han, Youngseok (Division of Life Sciences, University of Incheon) ;
  • Han, Taejun (Division of Life Sciences, University of Incheon) ;
  • Kim, Sanghun (National Institute of Environmental Research) ;
  • Jung, Jinho (Division of Environmental Science & Ecological Engineering, Korea University)
  • 투고 : 2010.08.23
  • 심사 : 2010.09.29
  • 발행 : 2010.11.30

초록

In this study, toxicity monitoring of sediments collected from 25 stations in the Geum river basin was conducted using Daphnia magna and Moina macrocopa. According to the results of acute toxicity tests (immobilization and mortality) of organic extracts of semdiments, Miho stream showed much less toxicity than Gap and Nonsan streams. In particular, significant toxicity was observed in both species for St.15 and St.16 sediment samples that passed through Deajeon city as a branch of Gap stream. For Nonsan stream, St.23 sediment showed high toxicity toward M. macrocopa. This site seemed to be affected by upper agricultural industrial complex. Additionally, M. macrocopa showed a higher sensitivity than D. magna for organic extracts of sediments. In the case of toxicity tests using sediment pore water and aqueous extracts, only pore water of St.27 sediment was toxic against D. magna. Toxicity identification evaluation showed that hydrogen sulfide was likely a major toxicant in the pore water.

키워드

참고문헌

  1. 논산시(2007). 제 47회 논산통계연보.
  2. 백용욱, 이용한, 김학규, 정다운, 안윤주(2010). 탄천 상하류의 하천수 및 퇴적물 오염도 연구. 한국육수학회지, 43(1), pp. 11-18.
  3. 양천희(1994). 농공단지 조성에 따른 하천 수질관리 대책에 관한 연구(충청남도 지역을 중심으로). 한국산업안전학회지, 9(1), pp. 155-160.
  4. 이민정, 최지웅, 김현맥, 안광국(2009). 대전천 수계의 장기 모니터링(2004-2007)에 의한 물리적, 화학적, 생물학적 평가 변수 분석. 한국하천호수학회지, 42(3), pp. 364-373.
  5. 이준기, 김석구, 송재홍, 이태윤(2009). 부산시 하천퇴적물의 유기 오염도 평가. 대한환경공학회지, 31 (11). pp. 975-982.
  6. 이찬원, 권영택, 윤종섭, 문성원(2002). 국내종 물벼룩 Simocephalus mixtus에 의한 습지퇴적물 독성도 측정. 한국환경과학회지, 11(9), pp. 851-855.
  7. 이충렬(2001). 갑천수계의 어류상과 어류군집. 환경생물학회지, 19(4), pp. 292-301.
  8. 이현준, 김효진, 오현주, 조기종, 김정규, 정진호(2007). 폐광산 배수와 퇴적물의 중금속 오염과 생물독성 평가. 수질보전 한국물환경학회지, 23(2), pp. 287-293.
  9. 전상호(1990). 한강 퇴적물에 함유된 오염물질의 존재형태와 이동성에 관한 연구. 한국육수학회지, 23(1), pp. 31-42.
  10. 정찬호, 이상구(2006). 대전지역 주요하천 하상퇴적물의 물리화학적 특성 및 중금속 분포. 한국광물학회지, 19(4), pp. 259-264.
  11. 정홍배, 박성규, 문성환, 류태권, 김소정, 배철한, 황인영(2001). 국내 하천 퇴적물 건강성 평가를 위한 Microtox 독성시험 조건확립 연구. 한국환경독성학회지, 16(4), pp. 143-151.
  12. 해양수산부(2005). 해양환경공정시험방법.
  13. 홍성일, 김성국(1996). 금호강 퇴적물의 유독성 오염물질의 거동특성. Journal of Nakdonggang Environmental Research Institute, 1(1), pp.171-182.
  14. 환경부(2008). 수질오염공정시험기준 ES 0475 1.1, 물벼륙을 이용한 급성 독성 시험법.
  15. 환경부(2009). 공단주변 공공수역 생태위해성평가체계 구축 및 위해원인 규명을 위한 연구사업 최종보고서.
  16. 황경엽, 박성열, 백원석, 정제호, 김영훈, 신원식, 이남주, 황인성(2007). 낙동강 퇴적물 내 중금속 존재 형태 및 용출 가능성. 상하수도학회지, 21(1), pp. 113-122.
  17. Adams, W. J., Kimerle, R. A., and Barett, J. W. (1992). Sediment quality and aquatic life assessment. Environ. Sci. Technol., 26, pp. 1864-1875. https://doi.org/10.1021/es00034a001
  18. Bagarino, T. (1992). Sulfide as an environmental factor and toxicant; tolerance and adaptations in aquatic organisms. Aquat. Tpxocol., 24, pp. 21-62. https://doi.org/10.1016/0166-445X(92)90015-F
  19. Chapman, P. M., Wang, F., Germano, J. D., and Batley, G. (2002). Pore water testing and analysis: the good, the bad, and the ugly. Mar. Pollut. Bull., 44. pp. 359-366. https://doi.org/10.1016/S0025-326X(01)00243-0
  20. Giesy, J. P. and Hoke, R. A. (1989). Freshwater sediment toxicity bioassessment: rationale for species selection and test design. Journal of Great Lakes Research, 15(4), pp. 539-569.
  21. Ho, K. T., Burgess, R. M., Pelletier, M. C., Serbst, J. R., Ryba, S. A., Cantwell, M. G., Kuhn, A., and Raczelowski, P. (2002). An overview of toxicant identification in sediments and dredged materials. Mar. Pollut. Bull., 44, pp. 286-293. https://doi.org/10.1016/S0025-326X(01)00251-X
  22. Ho, K. T. Y. and Quinn, J. G. (1993). Physical and chemical parameters of sediment extraction and fractionation that influence toxicity, as evaluated by microtox. Environ Toxirol Chem, 12, pp. 615-625. https://doi.org/10.1002/etc.5620120403
  23. Hoke, R. A., Giesy, J. P., and Kreis, R. G. (1992). Sediment porewater toxicity identification in the lower Fox river and Green bay. Wisconsin, using the Microtox assay. Ecotoxicol Environ. Saf., 23, pp. 343-354. https://doi.org/10.1016/0147-6513(92)90083-F
  24. Hong, L. C. D., Slooten, K. B., Sauvain, J. J., and Minh, T. L. (2000). Toxicity of sediments from the Ho Chi Minh city canals and saigon river, Vietnam. Environ. Toxicol., 15, pp. 469-475. https://doi.org/10.1002/1522-7278(2000)15:5<469::AID-TOX15>3.0.CO;2-0
  25. Kuster, E., Dorusch, F., and Altenburgcr, R. (2005). Effects of hydrogen sulfide to Vibrio fisheri, Scenedemus vacuolatuus, and Daphina mana. Environ. Toxicol. Chem., 24(10), pp. 2621-2629. https://doi.org/10.1897/04-546R.1
  26. Kwok, V. C., Hsieh, D. P. H., and Wong, P. K. (2005). Toxicity identification evaluation(TIE) of pore water of contaminated marine sediments collected f개m Hong Kong waters. Mar. Pollut. Bull., 51, pp. 1085-1091. https://doi.org/10.1016/j.marpolbul.2005.06.009
  27. OECD (2004). Daphnia sp., Acute Immobilisation Test Guideline for Testing of Chemicals, 202, Paris.
  28. Phillips, B. M., Anderson, B. S., and Hunt. J. W. (1997). Measurement and distribution of interstitial and overlying water ammonia and hydrogen sulfide in sediment toxicity tests. Mar. Environ. Res., 44, pp. 117-126. https://doi.org/10.1016/S0141-1136(96)00087-6
  29. Sarmiento, A. M., Olias, M., Nieto, J. M., Canovas, C. R., and Delgado, J. (2009). Natural attenuation processes in two water reservoirs receiving acid mine drainage. Sci. Total Environ., 407, pp. 2051-2061. https://doi.org/10.1016/j.scitotenv.2008.11.011
  30. Santiago, S., Thomas, R. L., Larbaigt, G., Rossel, D., Echeverria, M. A., Tarradellas, J., Loizeau, J. L., McCarthy, L., Mayfield, C. I., and Corvi, C. (1993). Comparative ecotoxicity of suspended sediment in the lower rhone river using algal fractionation, microtox and Daphnia magna bioassays. Hydrobiologia, 252, pp. 231-244. https://doi.org/10.1007/BF00005472
  31. Thomas, K. V., Barnard, N., Collins, K., and Eggleton, J (2003). Toxicity characterisation of sediment porewaters collected from UK estuaries using a Tisbe battagliai bioassay. Chemosphere, 53, pp. 1105-1111. https://doi.org/10.1016/S0045-6535(03)00611-8
  32. USEPA (1991). Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures, EPA 600/6-91/003. Washington, DC.
  33. USEPA (2002). Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, EPA/821/R-02/012. Washington, DC.
  34. Verrhiest, G., Clement, B., and Black, G. (2001). Single and combined effcets of sediment associated PAHs on three species of freshwater macroinvertebrates. Ecotoxicology, 10, pp. 363-372. https://doi.org/10.1023/A:1012223014534