DOI QR코드

DOI QR Code

Development Length of GFRP Bars

GFRP 보강근의 정착길이 설계식 제안

  • Ha, Sang-Su (Dept. of Architectural Engineering, Kangnam University) ;
  • Choi, Dong-Uk (Dept. of Architectural Engineering, Hankyong National University)
  • Published : 2010.02.28

Abstract

The objective of this study was to propose a development length equation for GFRP bars. A total of 104 modified pullout tests were completed while the test variables were embedment length (15, 30, $45d_b$), net cover thickness ($0.5{\sim}2.0d_b$), top-cast bar effect, different GFRP bar types (K2KR, K3KR and AsUS), and bar diameters (10, 13, 16 mm). Average bond stresses were determined based on modified pullout test results. Two variable linear regression analysis was performed of the average bond stresses. Utilizing 5% fractile concept, a conservative development length design equation was derived. The design equation derived in this study was compared to the ACI 440 committee equation. The cross-comparison revealed that the current equation resulted in shorter development lengths than those determined by the ACI 440 equation when the net cover thickness was large (greater than $1.0d_b$). On the other hand, when the net cover thickness was small (equal to or less than $1.0d_b$), the development lengths required by the current equation were larger than those by the ACI equation. The bond stresses were significantly influenced by the cover thicknesses. The current equation results in development lengths that are more economical when the cover thickness is large, and more conservative lengths when the cover thickness is small than the ACI 440 committee equation.

이 연구에서는 GFRP 보강근의 정착길이 설계식을 제안하기 위하여 실험적 연구를 수행하고 실험결과의 통계적 분석을 실시하였다. 총 104개의 수정인발실험을 완료하였으며 실험변수는 보강근의 묻힘길이(보강근 지름의 15, 30, 45배), 순피복두께(보강근 지름의 0.5~2.0배), 상부근 효과, 보강근 종류(국내산 2종, 국외산 1종 등 3종) 및 보강근지름(D10, D13, D16)이었다. 수정인발실험을 통해 얻은 실험 결과 평균부착강도를 결정하고, 평균부착강도에 대한 2변수 선형회귀분석을 실시하였다. 2변수 선형 회귀분석의 결과에 대하여 5% 분위수를 적용하여 보수적인 방법으로 정착 길이 설계식을 제안하였다. 이 연구의 제안식과 ACI 440.1R-06 식을 비교하였다. 순피복두께가 $1.0\;d_b$를 초과하는 경우 이 연구의 제안식이 더 경제적이고 순피복두께가 $1.0\;d_b$ 이하인 경우에는 이 연구의 식이 더 보수적으로서 이 연구의식을 사용하는 경우 보다 경제적이고 안전한 설계가 가능할 것으로 판단된다. 피복두께는 GFRP 보강근의 부착강도 발현에 큰 영향을 주는 것으로 나타났다.

Keywords

References

  1. ACI 440 Committee, "Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI 440.1R-06)," American Concrete Institute, Detroit, Michigan, 2006.
  2. ACI 440 Committee, "Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI 440.1R-03)," American Concrete Institute, Detroit, Michigan, 2003.
  3. Japan Society of Civil Engineers, "Recommendations for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials," Concrete Engineering Series, No. 23, 1997.
  4. Architectural Institute of Japan, "Design and Construction Guideline of Continuous Fiber Reinforced Concrete," 2001.
  5. ISIS Canada, "Reinforcing Concrete Structures with Fibre Reinforced Polymers," Design Manual, No. 3, 2001, 156 pp.
  6. CAN/CSA S806-02, "Design and Construction of Building Components with Fibre-Reinforced Polymers," Canadian Standard Association, Rexdale, Ontario, Canada, 2002: Annex H., "Test Method for Bond Strength of FRP Rods by Pullout Testing."
  7. 한국건설기술연구원, "FRP 복합재료 보강재 개발 및 이를 활용한 콘크리트 구조물 건설기술 개발," 1차년도 최종 보고서, 2004.
  8. 한국건설기술연구원, "FRP 복합재료 보강재 개발 및 이를 활용한 콘크리트 구조물 건설기술 개발," 2차년도 최종 보고서, 2005.
  9. ASTM D3916-02, "Standard Test Method for Tensile Properties of Pulltruded Glass -Fiber-Reinforced-Plastic Rods," American Society of Testing Materials, 2002.
  10. 유영찬, 박지선, 유영준, 박영환, "GFRP 보강근의 인장 강도 분석을 위한 시험방법 비교 연구," 콘크리트학회 논문집, 18권, 3호, 2006, pp. 303-312.
  11. 박찬기, 원종필, 강주원, "콘크리트 보강용 FRP 보강근의 내구성 설계를 위한 환경영향계수의 제안," 콘크리트학회 논문집, 16권, 4호, 2004, pp. 529-539. https://doi.org/10.4334/JKCI.2004.16.4.529
  12. 최동욱, 하상수, 이창호 "인발실험에 의한 GFRP 보강근의 정착길이 제안," 콘크리트학회 논문집, 19권, 3호, 2007, pp. 323-331. https://doi.org/10.4334/JKCI.2007.19.3.323
  13. 최동욱, 하상수, 천성철, "RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안," 콘크리트학회 논문집, 21권, 1호, 2009, pp. 65-74. https://doi.org/10.4334/JKCI.2009.21.1.065
  14. Eshani, M. R., Saadatmanesh, H., and Tao, S., "Design Recommendations for Bond of GFRP Rebars to Concrete," ASCE J. of Structural Engineering, Vol. 122, No. 3, 1996, pp. 247-254. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(247)
  15. Wambeke, B. W. and Shield, C. K., "Development Length of Glass Fiber-Reinforced Polymer Bars in Concrete," ACI Structural Journal, Vol. 103, No. 1, 2006, pp. 11-17.
  16. ACI Committee 355, "Qualification of Post-Installed Mechanical Anchors in Concrete (ACI 355.2-04)," American Concrete Institute, Detroit, Michigan, 2004.

Cited by

  1. Governing Design Factors of GFRP-Reinforced Concrete Bridge Deck vol.30, pp.6, 2015, https://doi.org/10.14346/JKOSOS.2015.30.6.70