DOI QR코드

DOI QR Code

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio

중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가

  • HwangBo, Jin (Dept. of Architectural Engineering, Hanyang University) ;
  • Han, Sang-Whan (Dept. of Architectural Engineering, Hanyang University) ;
  • Park, Young-Mi (Dept. of Architectural Engineering, Hanyang University)
  • Published : 2010.02.28

Abstract

This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

이 연구에서는 중력 전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진성능을 평가하였다. 이를 위하여, 이 연구에서는 3층, 7층 골조를 중력하중만 고려하여 설계하고, 대상 건물에 대한 비선형 정적 푸쉬 오버 해석과 비선형 동적 해석을 수행하였다. 그리고 이 연구는 그 비선형 해석에서 중력 전단비의 차이에 따른 뚫림 전단과 파괴 메커니즘을 예측할 수 있도록 제안한 슬래브-기둥 접합부 모델을 사용하였다. 이 연구 결과에 따르면 중력 전단비가 골조의 내진성능에 큰 영향을 미치는 것으로 나타났다. 특히 중력 전단비가 커짐에 따라 골조 접합부의 파괴가 취성적인 파괴를 나타내어 내진 성능이 떨어지는 것으로 나타났다.

Keywords

References

  1. Pan, A. D. and Moehle, J. P., "An Experimental Study of Slab-Column Connections," ACI Structural Journal, Vol. 89, No. 6, 1992, pp. 626-638.
  2. Robertson, I. N. and Durrani, A. J., "Seismic Response of Connections in Indeterminate Flat-slab Subassemblies," Report No. 41, Department of Civil Engineering, Rice University, Houston, Tex., 1990, 266 pp.
  3. Sang, W. H., Kee, S. H., Park, Y. M., Lee, L. H., and Kang, T. H.-K., "Hysteretic Behavior of Exterior Post-tensioned Flat Plate Connections," Engineering Structures, Elsevier, Vol. 28, No. 14, 2006, pp. 1983-1996. https://doi.org/10.1016/j.engstruct.2006.03.029
  4. 황보진, 박영미, 한상환, "철근콘크리트 플랫 플레이트 골조의 비선형 모델," 대한건축학회 논문집, 25권, 2호, 2009, pp. 75-82.
  5. ACI Committee 318, Building Code Requirements for Reinforced Concrete(ACI 318-05), American Concrete Institute, Detroit, 2005, 430 pp.
  6. MIDAS IT, MIDAS GEN Advanced Application, Seoul, Korea, 2002, pp. 7-47.
  7. OpenSees Development Team, OpenSees: Open System for Earthquake Engineering Simulations, Version 1.7.3, Berkeley, CA, 2006, 344 pp.
  8. Banchik, C. A., "Effective Beam Width Coefficients for Equivalent Frame Analysis of Flat-plate Structures," ME Thesis, Univ. of California at Berkeley, Cali., 1987, 56 pp.
  9. Moehole, J. P. and Diebold, J. W., 'Lateral Load Response of Flat Plate Frame," Journal of Structural Engineering, ASCE, Vol. 111, No. 10, 1985, pp. 2149-2165. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:10(2149)
  10. Federal Emergency Management Agency, Prestandard and Commentary for the Seismic Rehabilitation of Building, FEMA 356, Washington, DC, 2000, pp. 1-36.
  11. UBC, Structural Engineering Design Provisions, Uniform Building Code, Vol. 2, International Conference of Building Officials, 1994, pp. 2-11.
  12. Somerville, P., Smith, N., Puntamurthula, S., and Sun, J., "Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project, SAC Background Document," Report No. SAC/BD-97/04, SAC Joint Venture, 555 University Ave., Sacramento, Calif., 1997, 41 pp.
  13. Yun, S. Y., Foutch, D. A., and Lee, K., "Reliability and Performance Based Design for Seismic Loads," PMC2000-311, Notre Dame, IN, 2000.