References
- T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169–178.
- S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273–279. https://doi.org/10.1307/mmj/1029000272
- L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288. https://doi.org/10.1307/mmj/1031732778
- B. P. Duggal, Weyl's theorem for totally hereditarily normaloid operators, Rend. Circ. Mat. Palermo (2) 53 (2004), no. 3, 417–428. https://doi.org/10.1007/BF02875734
- B. P. Duggal, I. H. Jeon, and I. H. Kim, On Weyl's theorem for quasi-class A operators, J. Korean Math. Soc. 43 (2006), no. 4, 899–909. https://doi.org/10.4134/JKMS.2006.43.4.899
- T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389–403
- R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics, 109. Marcel Dekker, Inc., New York, 1988.
- J.-C. Hou, On the tensor products of operators, Acta Math. Sinica (N.S.) 9 (1993), no. 2, 195–202. https://doi.org/10.1007/BF02560050
- I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, J. Korean Math. Soc. 41 (2004), no. 4, 617–627. https://doi.org/10.4134/JKMS.2004.41.4.617
-
I. H. Jeon and I. H. Kim, On operators satisfying
$T^{\ast}|T^2|T{\geq}T^{\ast}|T|^2T$ , Linear Algebra Appl. 418 (2006), no. 2-3, 854–862. https://doi.org/10.1016/j.laa.2006.02.040 - I. H. Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42 (2005), no. 2, 269–277.
- W. Y. Lee, Weyl's theorem for operator matrices, Integral Equations Operator Theory 32 (1998), no. 3, 319–331. https://doi.org/10.1007/BF01203773
- W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), no. 1, 131–138 https://doi.org/10.1090/S0002-9939-00-05846-9
- W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61–64. https://doi.org/10.1017/S0017089500031268
- T. Saito, Hyponormal operators and related topics, Lectures on operator algebras (dedicated to the memory of David M. Topping; Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. II), pp. 533–664. Lecture Notes in Math., Vol. 247, Springer, Berlin, 1972.
- J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124 (1996), no. 1, 135–140. https://doi.org/10.1090/S0002-9939-96-03017-1
- K. Tanahashi, I. H. Jeon, I. H. Kim, and A. Uchiyama, Quasinilpotent part of class A or (p, k)-quasihyponormal operators (preprint).
- A. Uchiyama, Weyl's theorem for class A operators, Math. Inequal. Appl. 4 (2001), no. 1, 143–150.
- A. Uchiyama and S. V. Djordjevic, Weyls theorem for p-quasihyponormal operators (preprint).
- H. Weyl, Uber beschrankte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373–392. https://doi.org/10.1007/BF03019655
Cited by
- WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An*OPERATO vol.51, pp.5, 2014, https://doi.org/10.4134/JKMS.2014.51.5.1089