DOI QR코드

DOI QR Code

Efficient Callus Induction and Plant Regeneration of Guineagrass (Panicum maximum Jacq.)

난지형 목초 기니아그라스의 효율적인 캘러스 유도 및 식물체 재분화

  • Received : 2010.08.31
  • Accepted : 2010.11.01
  • Published : 2010.12.31

Abstract

Guineagrass (Panicum maximum Jacq.) is an important warm-season forage grass as well as biomass crop. It has both sexual and asexual mode of reproduction (apomictic) depending on cultivar. We developed efficient plant regeneration system for an apomictic (cv. Natsukaze) and a non-apomictic (Noh-PL1) guineagrass by optimizing the level of L-proline in the callus induction and that of $AgNO_3$ in plant regeneration medium. Among the L-proline concentrations tested, the best callus induction was achieved by using 2g/L L-proline in both the genotypes. Immature embryos proved to be the best explant source for tissue culture of guineagrass. The highest frequency of shoot regeneration was obtained on MS plant regeneration medium supplemented with 2 mg/L $AgNO_3$. These results provide a foundation for efficient tissue culture and genetic improvement of guineagrass.

기니아그라스의 유성생식 계통과 아포믹시스 계통을 이용하여 최적의 조직배양 조건을 검토하기 위하여 절편체 부위의 조직배양 능력 및 배양배지의 조건을 검토하였다. 그 결과 미성 숙배를 분리한 후 L-proline 2 g/L가 첨가된 캘러스 유도 배지에 치상하였을 때 높은 캘러스 유도율 및 활발한 증식을 관찰할 수 있었다. 또한 유도된 캘러스를 대상으로 재분화 효율을 조사한 결과, 성숙종자 유래의 캘러스는 재분화 능력을 가지고 있지 않은 반면에, 미성숙배 유래 캘러스로부터는 높은 재분화 효율이 관찰되었다. 따라서 기니아그라스의 조직배양에 있어서 사용되는 절편체의 부위는 매우 중요하며, 미성숙배는 캘러스 유도와 식물체 재분화에 있어서 매우 효과적인 부위임이 증명되었다. 또한 미성숙배의 계통별 재분화 능력에는 차이가 있었으며, 가장 낮은 재분화율을 보인 계통을 이용하여 식물체 재분화에 영향을 미치는 $AgNO_3$의 효과를 조사하였다. 고농도의 $AgNO_3$는 albino 신초의 발생을 유발하는 반면, 2 mg/L의 저농도로 $AgNO_3$를 재분화 배지에 첨가하였을 때 정상적인 신초의 높은 재분화 효율이 관찰되었다. 본 연구에서 확인된 캘러스 유도 및 식물체 재분화 조건은 형질전환을 통한 기니아그라스의 신품종 개발 및 식물의 생식 양식의 메커니즘을 규명하는데 매우 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. Armstrong C.L., C.E. Green. 1985. Establishment and maintenance of friable, embryogenic callus nad the involvement of L-proline. Planta. 164:207-214. https://doi.org/10.1007/BF00396083
  2. Felfoldi, K., L. Purnhauser. 1992. Induction of regenerating callus cultures from immature embryos of 44 wheat and 3 triticale cultivars. Cereal Res Commun. 20:273-277.
  3. Gondo, T., J. Matsumoto, S. Tsuruta, M. Yoshida, A. Kawakami, F. Terami, M. Ebina, T. Yamada, R. Akashi. 2009. Particle inflow gun-mediated transformation of multiple-shoot clumps in rhodes grass (Chloris gayana). J Plant Physiol. 166:435-441. https://doi.org/10.1016/j.jplph.2008.06.014
  4. Jha, A.K., L.S. Dahleen, J.C. Suttle. 2007. Ethylene influences green plant regeneration from barley callus. Plant Cell Rep. 26:285-290. https://doi.org/10.1007/s00299-006-0252-0
  5. Herr, J. M. Jr. 1982. An analysis of methods for permanently mounting ovules cleared in four-anda-half type clearing fluids. Stain. Technol. 57:161-169. https://doi.org/10.3109/10520298209066609
  6. Kojima, A. and Y. Nagato. 1992. Diplosporous embryo-sac formation and the degree of diplospory in Allium tuberosum. Sex. Plant Reprod. 5:72-78. https://doi.org/10.1007/BF00714560
  7. Lakshmanan, P., J. Geijskes, L. Wang, A. Elliott, C. Grof, N. Berding, G. smith. 2006. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep. 25:1007-1015. https://doi.org/10.1007/s00299-006-0154-1
  8. Mithila, J., J. Hall, J. Victor, P. Saxena. 2003. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep 21:408-414. https://doi.org/10.1007/s00299-002-0544-y
  9. Murashige, T. and F. Skoog. 1962. A revise medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  10. Nakajima, K. and N. Mochizuki. 1983. Degrees of sexuality in sexual plants of guineagrass by the simplified embryo sac analysis. Japan. J. Breed. 33:45-54. https://doi.org/10.1270/jsbbs1951.33.45
  11. O'Neill C.M., A.E. Aurther, R.J. Mathias. 1996. The effect of proline, thioproline and methylglyoxal-bis-(guanylhydrazone) on shoot regeneration frequencies from stem explants of B. napus. Plant Cell Rep. 15:695-698. https://doi.org/10.1007/BF00231927
  12. Purnhauser, L., P. Medgyesy, M. Czako, P.H. Dix, L. Marton. 1987. Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginofolia tissue cultures using the ethylene inhibitor $AgNO_3$. Plant Cell Rep. 6:1-4. https://doi.org/10.1007/BF00269725
  13. Seo, M.S., M. Takahara, M. Ebina, T. Takamizo. 2008. Evaluation of tissue culture response from mature seeds of Panicum spp. Grassland Sci. 54:125-130. https://doi.org/10.1111/j.1744-697X.2008.00115.x
  14. Seo, M.S., M, Takahara, and T, Takamizo. 2010. Optimization of culture condition for plant regeneration of Panicum spp. through somatic embryogenesis. Grassland Sci. 56:6-12. https://doi.org/10.1111/j.1744-697X.2009.00166.x
  15. Somleva, M., Z. Tomaszewski, and B. Conger. 2002. Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci. 42:2080-2087. https://doi.org/10.2135/cropsci2002.2080
  16. Toki S., N. Hara, K. Ono, H. Onodera, A. Tagiri, S. Oka, and H. Tanaka. 2006. Early infection of scutellum tissue with Agrobacterium allows highspeed transformation of rice. The Plant J. 47:969-976. https://doi.org/10.1111/j.1365-313X.2006.02836.x
  17. Toyama, K., C.H. Bae, J.G. Kang, Y.P. Lim, T. Adachi, K.Z. Riu, P.S. Song, and H.Y. Lee. 2003. Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol Cells. 16:19-27.
  18. Vain, P., H. Yean, and P. Flament. 1989. Enhancement and regeneration of embryogenic type II callus in Zea mays L. by $AgNO_3$. Plant Cell Tiss Org Cult. 18:143-151. https://doi.org/10.1007/BF00047740
  19. Vogel, K.P., J.J. Brejda, D.T. Walters, and D.R. Buxton. 2002. Switchgrass biomass production in the Midwest USA: harvest and nitrogen management. Agron. J. 94:413-420. https://doi.org/10.2134/agronj2002.0413
  20. Yamada-Akiyama, H., Y. Akiyama, M. Ebina, Q. Xu, S. Tsuruta, J. Yazaki, N. Kishimoto, S. Kikuchi, M. Takahara, T. Takamizo, S. Sugita, H. Nakagawa. 2009. Analysis of expressed sequence tags in apomictic guineagrass (Panicum maximum). J. Plant Physiol. 166:750-761 https://doi.org/10.1016/j.jplph.2008.10.001