DOI QR코드

DOI QR Code

Threshold Voltage Control through Layer Doping of Double Gate MOSFETs

  • 투고 : 2010.05.24
  • 심사 : 2010.09.24
  • 발행 : 2010.09.30

초록

Double Gate MOSFETs (DG MOSFETs) with doping in one or two thin layers of an otherwise intrinsic channel are simulated to obtain the transport characteristics, threshold voltage and leakage current. Two different device structures- one with doping on two layers near the top and bottom oxide layers and another with doping on a single layer at the centre- are simulated and the variation of device parameters with a change in doping concentration and doping layer thickness is studied. It is observed that an n-doped layer in the channel reduces the threshold voltage and increases the drive current, when compared with a device of undoped channel. The reduction in the threshold voltage and increase in the drain current are found to increase with the thickness and the level of doping of the layer. The leakage current is larger than that of an undoped channel, but less than that of a uniformly doped channel. For a channel with p-doped layer, the threshold voltage increases with the level of doping and the thickness of the layer, accompanied with a reduction in drain current. The devices with doped middle layers and doped gate layers show almost identical behavior, apart from the slight difference in the drive current. The doping level and the thickness of the layers can be used as a tool to adjust the threshold voltage of the device indicating the possibility of easy fabrication of ICs having FETs of different threshold voltages, and the rest of the channel, being intrinsic having high mobility, serves to maintain high drive current in comparison with a fully doped channel.

키워드

참고문헌

  1. K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for Double-Gate SOI MOSFETs,” IEEE Trans. Electron Devices, Vol.40, No.12, pp.2326-2329, 1993. https://doi.org/10.1109/16.249482
  2. R. W. Keyes, “The effect of randomness in the distribution of impurity atoms on FET thresholds,” Appl. Phys. A, Vol.8, No.3, pp.251-259, 1975. https://doi.org/10.1007/BF00896619
  3. R. W. Keyes, “Effect of randomness in the distribution of impurity ions on FET thresholds in integrated electronics,” IEEE J. Solid-State Circuits, Vol.10, No.4, pp.245-247, 1975. https://doi.org/10.1109/JSSC.1975.1050600
  4. A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in Sub-0.1${\mu}m$ MOSFETs: A 3-D atomistic simulation study,” IEEE Trans. Electron Devices, Vol.45, pp.2505-2513, 1998. https://doi.org/10.1109/16.735728
  5. A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in sub 50 nm MOSFETs: a statistical 3D ‘atomistic’ simulation study,” Nanotechnology, Vol.10, pp.153-158, 1999. https://doi.org/10.1088/0957-4484/10/2/309
  6. A. Asenov and S. Saini, “Polysilicon gate enhancement of the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFETs with ultrathin gate oxide,” IEEE Trans. Electron Devices, Vol.47, pp.805-812, 2000. https://doi.org/10.1109/16.830997
  7. A. R. Brown, A. Asenov, and J. R. Watling, “Intrinsic fluctuations in sub 10-nm Double-Gate MOSFETs introduced by discreteness of charge and matter,” IEEE Trans. Nanotechnology, Vol.1, No.4, pp.195-200, 2002. https://doi.org/10.1109/TNANO.2002.807392
  8. A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness,” IEEE Trans. Electron Devices, Vol.50, No.5, pp.1254-1260, 2003. https://doi.org/10.1109/TED.2003.813457
  9. A. Asenov, A. R. Brown, J. H. Davies, S. Kaya, and G. Slavcheva, “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs,” IEEE Trans. Electron Devices, Vol.50, No.9, pp.1837-1852, 2003. https://doi.org/10.1109/TED.2003.815862
  10. G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy, and A. Asenov, “Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs,” IEEE Trans. Electron Devices, Vol.53, No.12, pp.3063-3070, 2006. https://doi.org/10.1109/TED.2006.885683
  11. M. Ieong, H.-S. P. Wong, E. Nowak, J. Kedzierski, and E. C. Jones, “High performance double-gate device technology challenges and opportunities,” in Procedings of International Symposium on Quality Electronic Design, 2002, pp.492-495.
  12. F. Liu, L. Zhang, J. Zhang, J. He, and M. Chan, “Effects of body doping on threshold voltage and channel potential of symmetric DG MOSFETs with continuous solution from accumulation to stronginversion regions,” Semicond. Sci. Technol., Vol.24, No.8, p. 085005(8pp), 2009.
  13. R. Lin, Q. Lu, P. Ranade, T.-J. King, and C. Hu, “An djustable work function technology using Mo gate for CMOS devices,” IEEE Electron. Device Lett., Vol.23, No.1, pp.49-51, 2002. https://doi.org/10.1109/55.974809
  14. C. Y. Lin, M. W. Ma, A. Chin, Y. C. Yeo, C. Zhu, M. F. Li, and D.-L. Kwong, “Fully silicided NiSi gate on $La_2O_3$ MOSFETs,” IEEE Electron. Device Lett., Vol.24, No.5, pp.348-350, 2003. https://doi.org/10.1109/LED.2003.812569
  15. J. Liu, H. C. Wen, J. P. Lu, and D.-L. Kwong, “Dual-work-function metal gates by full silicidation of poly-Si with Co-Ni bi-Layers,” IEEE Electron. Device Lett., Vol.26, No.4, pp.228-230, 2005. https://doi.org/10.1109/LED.2005.844696
  16. D. S. Yu, C. H. Wu, C. H. Huang, A. Chin, W. J. Chen, C. Zhu, M. F. Li, and D.-L. Kwong, “Fully Silicided NiSi and Germanided NiGe dual gates on $SiO_2$ n- and p-MOSFETs,” IEEE Electron. Device Lett., Vol.24, No.11, pp.739-741, 2003. https://doi.org/10.1109/LED.2003.819274
  17. H. Zhong, S.-N. Hong, Y.-S. Suh, H. Lazar, G. Heuss, and V. Misra, “Properties of Ru-Ta alloys as gate electrodes for NMOS and PMOS silicon devices,” IEDM Tech. Dig., pp.467-470, 2001.
  18. T.-L. Li, C.-H. Hu, W.-L. Ho, H. C. H. Wang, and C.-Y. Chang, “Continuous and precise work function adjustment for integratable dual metal gate CMOS technology using Hf-Mo binary alloys,” IEEE Trans. Electron Devices, Vol.52, No.6, pp.1172-1179, 2005. https://doi.org/10.1109/TED.2005.848108
  19. V. Misra, H. Zhong, and H. Lazar, “Electrical properties of Ru-based alloy gate electrodes for dual metal gate Si-CMOS,” IEEE Electron. Device Lett., Vol.23, No.6, p.354356, 2002. https://doi.org/10.1109/LED.2002.1004233
  20. X. P. Wang, M.-F. Li, C. Ren, X. F. Yu, C. Shen, H. H. Ma, A. Chin, C. X. Zhu, J. Ning, M. B. Yu, and D.-L. Kwong, “Tuning effective metal gate work function by a novel gate dielectric HfLaO for nMOSFETs,” IEEE Electron. Device Lett., Vol.27, No.1, pp.31-33, 2006. https://doi.org/10.1109/LED.2005.859950
  21. C.-H. Lu, G. M. T. Wong, M. D. Deal, W. Tsai, P. Majhi, C. O. Chui, M. R. Visokay, J. J. Chambers, L. Colombo, B. M. Clemens, and Y. Nishi, “Characteristics and mechanism of tunable work function gate electrodes using a bilayer metal structure on $SiO_2\;and\;HfO_2$,” IEEE Electron. Device Lett., Vol.26, No.7, pp.445-447, 2005. https://doi.org/10.1109/LED.2005.851232
  22. J. K. Schaeffer, C. Capasso, L. R. C. Fonseca, S. Samavedam, D. C. Gilmer, and Y. Liang, “Challenges for the integration of metal gate electrodes,” IEDM Tech. Dig., pp.287-290, 2004.
  23. H. Lu, W. Y. Lu, and Y. Taur, “Effect of body doping on double-gate MOSFET characteristics,” Semicond. Sci. Technol., Vol.23, No.1, 2008.
  24. J. Kavalieros, B. Doyle, S. Datta, G. Dewey, M. Doczy, B. Jin, D. Lionberger, M. Metz, W. Rachmady, M. Radosavljevic, U. Shah, N. Zelick, and R. Chau, “Tri-Gate transistor architecture with High ${\kappa}$ gate dielectrics, Metal gates and Strain engineering,” in Symp. on VLSI Technology, 2006, pp.50-51.
  25. Y. Taur, C. H. Wann, and D. J. Frank, “25 nm CMOS design considerations,” IEDM Tech. Dig., pp.789-792, 1998.
  26. D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.- S. P. Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proceedings of the IEEE, Vol.89, pp.259-288, 2001. https://doi.org/10.1109/5.915374
  27. H. Tanno, M. Sakuraba, B. Tillack, and J. Murota, “Heavy B atomiclayer doping characteristics in Si epitaxial growth on B adsorbed Si(100) by ultraclean low-pressure CVD system,”Solid-State Electron., Vol.53, No.8, pp.877-879, 2009. https://doi.org/10.1016/j.sse.2009.04.015
  28. J. Murota, M. Sakuraba, and B. Tillack, “Atomically controlled processing for Group IV semiconductors by chemical vapor deposition,” Jpn. J. Appl. Phys., Vol.45, No.9, pp.6767-6785, 2006. https://doi.org/10.1143/JJAP.45.6767
  29. B. Tillack, Y. Yamamoto, D. Bolze, B. Heinemann, H. Rucker, D. Knoll, J. Murota, and W. Mehr, “Atomic layer processing for doping of SiGe,” Thin Solid Films, Vol.508, No.1, pp.279-283, 2006. https://doi.org/10.1016/j.tsf.2005.08.408
  30. S. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel, and R. Venugopal, “Two-dimensional quantum mechanical modeling of nanotransistors,” J. Appl. Phys., Vol.91, pp.2343-2354, 2002. https://doi.org/10.1063/1.1432117
  31. G. Curatola, G. Fiori, and G. Iannaccone, “Modelling and simulation challenges for nanoscale MOSFETs in the ballistic limit,” Solid-State Electron., Vol.48, No.4, pp.581-587, 2006. https://doi.org/10.1016/j.sse.2003.09.029
  32. D. Munteanu and J. L. Autran, “Two-dimensional modeling of quantum ballistic transport in ultimate double-gate SOI devices,” Solid-State Electron., Vol.47, No.7, pp.1219-1225, 2003. https://doi.org/10.1016/S0038-1101(03)00039-X
  33. S. Datta, “Nanoscale device modeling: the Greens function method,” Superlattices Microstruct., Vol.28, No.4, pp.253-278, 2000. https://doi.org/10.1006/spmi.2000.0920
  34. A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, “Theory of ballistic nanotransistors,” IEEE Trans. Electron devices, Vol.50, No.9, pp.1853-1864, 2003. https://doi.org/10.1109/TED.2003.815366
  35. R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom, and D. Jovanovic, “Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches,” J. Appl. Phys., Vol.92, No.7, pp.3730-3739, 2002. https://doi.org/10.1063/1.1503165
  36. K. Natori, “Ballistic Metal-Oxide-Semiconductor Field Effect Transistor,” J. Appl. Phys., Vol.76, No.8, pp.4879-4890, 1994. https://doi.org/10.1063/1.357263
  37. Y. Taur, “Analytic solutions of charge and capacitance in symmetric and asymmetric doublegate MOSFETs,” IEEE Trans. Electron Devices, Vol.48, No.12, pp.2861-2869, 2001. https://doi.org/10.1109/16.974719
  38. W. Y. Choi, H. Kim, B. Lee, J. D. Lee, and B. G. Park, “Stable threshold voltage extraction using Tikhonov’s regularization theory,” IEEE Trans. Electron Devices, Vol.51, No.11, pp.1833-1839, 2004. https://doi.org/10.1109/TED.2004.837010
  39. X. Zhou, K. Y. Lim, and D. Lim, “A simple and unambiguous definition of threshold voltage and its implications in deep-submicron MOS device modeling,” IEEE Trans. Electron Devices, Vol.46, No.4, pp.807-809, 1999. https://doi.org/10.1109/16.753720