참고문헌
- Moon, C., Oh, Y. and Roth, J. A. (2003) Current status of gene therapy for lung cancer and head and neck cancer. Clin. Cancer Res. 9, 5055-5067.
- Fujiwara, T., Tanaka, N., Kanazawa, S., Ohtani, S., Saijo, Y., Nukiwa, T., Yoshimura, K., Sato, T., Eto, Y., Chada, S., Nakamura, H. and Kato, H. (2006) Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 24, 1689-1699. https://doi.org/10.1200/JCO.2005.03.4116
- O'Neill, D. and Bhardwaj, N. (2005) Exploiting dendritic cells for active immunotherapy of cancer and chronic infection. Methods Mol. Med. 109, 1-18.
- Kim, R., Emi, M. and Tanabe, K. (2006) Cancer immuno-suppression and autoimmune disease: beyond immuno-suppressive network for tumor immunity. Immunology 119, 254-264. https://doi.org/10.1111/j.1365-2567.2006.02430.x
- Dudley, M. E., Yang, J. C., Sherry, R., Hughes, M. S., Royal, R., Kammula, U., Robbins, P. F., Huang, J., Citrin, D. E., Leitman, S. F., Wunderlich, J., Restifo, N. P., Thomasian, A., Downey, S. G., Smith, F. O., Klapper, J., Morton, K., Laurencot, C., White, D. E. and Rosenberg, S. A. (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 26, 5233-5239. https://doi.org/10.1200/JCO.2008.16.5449
- Kirkwood, J. M., Tarhini, A. A., Panelli, M. C., Moschos, S. J., Zarour, H. M., Butterfield, L. H. and Gogas, H. J. (2008) Next generation of immunotherapy for melanoma. J. Clin. Oncol. 20, 3445-3455.
- Samuel, M., Chow, P. K., Chan, Shih-Yen, E., Machin, D. and Soo, K. C. (2009) Neoadjuvant and adjuvant therapy for surgical resection of hepatocellular carcinoma. Database Syst. Rev. Jan. 21(1), CD001199.
- Kelly, E. and Russell, S. J. (2007) History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15, 651-659. https://doi.org/10.1038/sj.mt.6300108
- Liu, T. C. and Kirn, D. (2008) Gene therapy progress and prospects cancer: oncolytic viruses. Gene Ther. 15, 877-884. https://doi.org/10.1038/gt.2008.72
- Kirn, D. H. and Thorne, S. H. (2009) Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat. Rev. Cancer 9, 64-71. https://doi.org/10.1038/nrc2545
- Kaneda, Y., Nakajima, T., Nishikawa, T., Yamamoto, S., Ikegami, H., Suzuki, N., Nakamura, H., Morishita, R. and Kotani, H. (2002) HVJ (hemagglutinating virus of Japan) envelope vector as a versatile gene delivery system. Mol. Ther. 6, 219-226. https://doi.org/10.1006/mthe.2002.0647
- Kaneda, Y. (2010) Update on non-viral delivery methods for cancer therapy; possibilities of DDS with anti-cancer activities beyond delivery as a new therapeutic tool. Expert Opinion Drug Delivery 9, 1079-1093
- Okada, Y. (1993) Sendai virus-induced cell fusion; in Methods in Enzymology volume 221, Duzgunes N, (ed.). pp 18-41. Academic Press, Inc., San Diego, USA.
- Kaneda, Y., Saeki, Y. and Morishita, R. (1999) Gene therapy using HVJ-liposomes; the best of both worlds. Mol. Med. Today 5, 298-303. https://doi.org/10.1016/S1357-4310(99)01482-3
- Kaneda, Y. (2008) Applications on hemagglutinating virus of Japan in therapeutic delivery system. Expert Opinion Drug Delivery 5, 221-233. https://doi.org/10.1517/17425247.5.2.221
- Kaneda, Y., Nakajima, T. and Yamamoto, S. (2005) Development of HVJ envelope vector and its application to gene therapy. Adv. Genet. 53PA, 307-332.
- Kurooka, M. and Kaneda, Y. (2007) Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 67, 227-236. https://doi.org/10.1158/0008-5472.CAN-06-1615
- Fujihara, A., Kurooka, M., Miki, T. and Kaneda Y. (2008) Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation. Cancer Immunol. Immunother. 57, 73-84. https://doi.org/10.1007/s00262-007-0351-y
-
Pasare, C. and Medzhitov, R. (2003)Toll pathway-dependent blockade of
$CD4^+CD25^+$ T cell-mediated suppression by dendritic cells. Science 299, 1033-1036. https://doi.org/10.1126/science.1078231 - Lal, G., Zhang, N., van der Touw, W., Ding, Y., Ju, W., Bottinger, E. P., Reid, S. P., Levy, D. E. and Bromberg, J. S. (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J. Immunol. 182, 259-273. https://doi.org/10.4049/jimmunol.182.1.259
- Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K. J., Yamaguchi, O., Otsu, K., Tsujimura, T., Koh, C. S., Sousa, C. R., Matsuura, Y., Fujita, T. and Akira, S. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105. https://doi.org/10.1038/nature04734
- Seth, R. B., Sun, L., Ea, C. K. and Chen, Z. J. (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669-682. https://doi.org/10.1016/j.cell.2005.08.012
- Tang, E. D. and Wang, C. Y. (2010) TRAF5 is a down-stream target of MAVS in antiviral innate immune signaling. PLoS One 5(2), e9172. https://doi.org/10.1371/journal.pone.0009172
- Suzuki, H., Kurooka, M., Hiroaki, Y., Fujiyoshi, Y. and Kaneda, Y. (2008) Sendai virus F glycoprotein induces IL-6 production in dendritic cells in a fusion-independent manner. FEBS Letter 582, 1325-1329. https://doi.org/10.1016/j.febslet.2008.03.011
- Kawaguchi, Y., Miyamoto, Y., Inoue, T. and Kaneda, Y. (2009) Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int. J. Cancer 124, 2478-2487. https://doi.org/10.1002/ijc.24234
- Sadler, J. and Williams, B. R. G. (2008) Interferon-inducible antiviral effects. Nat. Rev. Immunology. 8, 559-568. https://doi.org/10.1038/nri2314
- Platanias, L. C. and Fish, E. N. (1999) Signaling pathways activated by interferons. Exp. Hematol. 11, 1583-1592.
- Tanaka, M., Shimbo, T., Kikuchi, Y., Matsuda, M. and Kaneda, Y. (2010) Sterile alpha motif containing domain 9 (SAMD9) is involved in death signaling of malignant glioma treated with inactivated Sendai virus particle (HVJ-E) or type I interferon. Int. J. Cancer 126, 1982-1991.
- Ito, M., Yamamoto, S., Nimura, K., Hiraoka, K., Tamai, K. and Kaneda, Y. (2005) Rad51 siRNA delivered by HVJ envelope vector enhances the anticancer effect of cisplatin J. Gene Med. 7, 1044-1052. https://doi.org/10.1002/jgm.753
- Blangy, A., Lane, H. A., d'Herin, P., Harper, M., Kress, M. and Nigg, E. A. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159-1169. https://doi.org/10.1016/0092-8674(95)90142-6
- Matsuda, M., Yamamoto, T., Matsumura, A. and Kaneda, Y. (2009) Highly efficient eradication of intracranial glioblastoma using Eg5 siRNA combined with HVJ envelope. Gene Ther. 16, 1465-1476. https://doi.org/10.1038/gt.2009.99
- Lefranc, F., Cool, V., Velu, T., Brotchi, J. and De Witte, O. (2002) Granulocyte macrophage-colony stimulating factor gene transfer to induce a protective anti-tumoral immune response against the 9 L rat gliosarcoma model. Int. J. Oncol. 20, 1077-1085
- Pan, D., Wei, X., Liu, M., Feng, S., Tian, X., Feng, X. and Zhang, X. (2009) Adenovirus mediated transfer of p53, GM-CSF and B7-1 suppresses growth and enhances immunogenicity of glioma cells. Neurol. Res. doi: 10.1179/174313209X455736.
- Natsume, A., Mizuno, M., Ryuke, Y. and Yoshida, J. (1999) Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther. 6, 1626-1633. https://doi.org/10.1038/sj.gt.3300990
- Meijer, D. H., Maguire, C. A., LeRoy, S. G. and Sena-Esteves, M. (2009) Controlling brain tumor growth by intraventricular administration of an AAV vector encoding IFN-beta. Cancer Gene Ther. 16, 664-671. https://doi.org/10.1038/cgt.2009.8
- Glick, R. P., Lichtor, T., de Zoeten, E., Deshmukh, P. and Cohen, E. P (1999) Prolongation of survival of mice with glioma treated with semiallogeneic fibroblasts secreting interleukin-2. Neurosurgery 45, 867-874. https://doi.org/10.1097/00006123-199910000-00028
- Iwadate, Y., Inoue, M., Saegusa, T., Tokusumi, Y., Kinoh, H., Hasegawa, M., Tagawa, M., Yamaura, A., Shimada, H. (2005) Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin. Cancer Res. 11, 3821-3827. https://doi.org/10.1158/1078-0432.CCR-04-1485
- Liu, Y., Ehtesham, M., Samoto, K., Wheeler, C. J., Thompson, R. C., Villarreal, L. P., Black, K. L. and Yu, J. S. (2002) In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther. 9, 9-15. https://doi.org/10.1038/sj.cgt.7700399
- Hellums, E. K., Markert, J. M., Parker, J. N., He, B., Perbal, B., Roizman, B., Whitley, R. J., Langford, C. P., Bharara, S. and Gillespie, G. Y. (2005) Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro. Oncol. 7, 213-224. https://doi.org/10.1215/S1152851705000074
- Matsuda, M., Nimura, K., Shimbo, T., Hamasaki, T., Yamamoto, T., Matsumura, A. and Kaneda, Y. (2010) Immunogene therapy using immunomodulating HVJ-E vector augments anti-tumor effects in murine malignant glioma. J. Neurooncol. In press.
- Malek, T. R. and Bayer, A. L. (2004) Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665-674. https://doi.org/10.1038/nri1435
- Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. and Lafaille, J. J. (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J. Exp. Med. 196, 851-857. https://doi.org/10.1084/jem.20020190
- Kawachi, M., Tamai, K., Saga, K., Yamazaki, T., Fujita, H., Shimbo, T., Nimura, K., Nishifuji, K., Amagai, M., Uitto, J. and Kaneda, Y. (2007) Development of tissue-targeting HVJ envelope vector for successful delivery of therapeutic gene to mouse skin. Hum. Gene Ther. 18, 881-894. https://doi.org/10.1089/hum.2007.046
- Shimbo, T., Kawachi, M., Saga, K., Fujita, H., Yamazaki, T., Tamai, K. and Kaneda, Y. (2007) Development of a transferrin receptor-targeting HVJ-E vector. Biochem. Biophys. Res. Comm. 364, 423-428. https://doi.org/10.1016/j.bbrc.2007.09.135
- Saga, K., Tamai, K., Kawachi, M., Shimbo, T., Fujita, H., Yamazaki, T. and Kaneda, Y. (2008) Functional modification of Sendai virus by siRNA. J. Biotechnol. 133, 386-394. https://doi.org/10.1016/j.jbiotec.2007.10.003
- Kircheis, R. and Wagner, E. (2005) Transferrin receptortargeted gene delivery systems; in Polymeric Gene Delivery Amiji, M. M. (ed.), pp 537-556. CRC Press LLC, Florida, USA.
- Sudimack, J. and Lee, R. J. (2000) Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41, 147-162. https://doi.org/10.1016/S0169-409X(99)00062-9
- Morris, J. C. and Waldmann, T. A. (2009) Antibody-based therapy of leukaemia. Expert Rev. Mol. Med. 11, e29. https://doi.org/10.1017/S1462399409001215
- Vallera, D. A, Chen, H., Sicheneder, A. R., Panoskaltsis-Mortari, A. and Taras, E. P. (2009) Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk. Res. 33, 1233-1242. https://doi.org/10.1016/j.leukres.2009.02.006
- van Waarde, A., Rybczynska, A. A, Ramakrishnan, N., Ishiwata, K., Elsinga, P. H. and Dierckx, R. A. (2010) Sigma receptors in oncology: therapeutic and diagnostic applications of sigma ligands. Curr. Pharm. Des. In press.
- Chono, S., Li, S. D., Conwell, C. C. and Huang, L. (2008) An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J. Control Release 131, 64-69. https://doi.org/10.1016/j.jconrel.2008.07.006
- Clement, V., Dutoit, V., Marino, D., Dietrich, P. Y. and Radovanovic, I. (2009) Limits of CD133 as a marker of glioma self-renewing cells. Int. J. Cancer 125, 244-248. https://doi.org/10.1002/ijc.24352
피인용 문헌
- Anti-tumor effects of inactivated Sendai virus particles with an IL-2 gene on angiosarcoma vol.149, pp.1, 2013, https://doi.org/10.1016/j.clim.2013.05.019
- Recent advances and developments in the antitumor effect of the HVJ envelope vector on malignant melanoma: from the bench to clinical application vol.20, pp.11, 2013, https://doi.org/10.1038/cgt.2013.61