DOI QR코드

DOI QR Code

Structural and Magnetic Properties of LiZnO Added MgFe2O4 Composite

  • Tadi, Ravindar (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Yong-Il (Korea Research Institute of Standards and Science) ;
  • Kim, Cheol-Gi (Department of Materials Science and Engineering, Chungnam National University) ;
  • Ryu, Kwon-Sang (Korea Research Institute of Standards and Science)
  • Received : 2010.09.17
  • Accepted : 2010.10.06
  • Published : 2010.12.31

Abstract

$Li_{0.1}Zn_{0.9}O$ and $MgFe_2O_4$ powders were synthesized using chemical methods and mixed in different proportions to prepare a mixture of $Li_{0.1}Zn_{0.9}O$ and $MgFe_2O_4$ that was thermally treated between 900 to $1100^{\circ}C$ for 1 hour. Structural characterization was done using X-ray powder diffraction measurements. Grain sizes and morphologies of $Li_{0.1}Zn_{0.9}O$, $MgFe_2O_4$, and $Li_{0.1}Zn_{0.9}O+MgFe_2O_4$ samples were observed using a scanning electron microscope. Variation of magnetic properties of the $Li_{0.1}Zn_{0.9}O+MgFe_2O_4$ samples due to the addition of $Li_{0.1}Zn_{0.9}O$ was studied in relation to the structural changes occurring due to the thermal treatment. In particular, changes in the cationic distribution between the tetrahedral and octahedral positions were studied with respect to the increase of the annealing temperature. Magnetization was found to be dependent on the cations distributed in the tetrahedral and octahedral sites of the $MgFe_2O_4$.

Keywords

References

  1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006). https://doi.org/10.1038/nature05023
  2. S. W Sheongi and M. Mostovoy, Nat. Mat. 6, 13 (2007). https://doi.org/10.1038/nmat1804
  3. A. Singh, V. Pandey, R. K. Kotnala, and D. Pandey, Phys. Rev. Lett. 101, 247602 (2008). https://doi.org/10.1103/PhysRevLett.101.247602
  4. S. Priya, R. Islam, S. Dong, and D. Viehland, J. Electroceram. 19, 147 (2007).
  5. M. Fiebig, J. Phys. D 38, R123 (2005). https://doi.org/10.1088/0022-3727/38/8/R01
  6. N. A. Spaldin and M. Fiebig, Science 309, 391 (2005). https://doi.org/10.1126/science.1113357
  7. R. Tadi, Y. I. Kim, A. K. Sarella, C. G. Kim, and K. S. Ryu, J. Magn. Magn. Mater. 322, 3372 (2010). https://doi.org/10.1016/j.jmmm.2010.06.029
  8. M. Gateshki, V. Petkov, S. K. Pradhan, and T. Vogt, J. Appl. Cryst. 38, 772 (2005). https://doi.org/10.1107/S0021889805024477
  9. Z. L. Wang, J. Phys.: Cond. Matt. 16, R829 (2004). https://doi.org/10.1088/0953-8984/16/25/R01
  10. A. Onodera, N. Tamaki, Y. Kawamura, T. Sawada, and H. Yamashita, Jpn. J. Appl. Phys. 35, 5160 (1996). https://doi.org/10.1143/JJAP.35.5160
  11. H. K. Yadav, K. Sreenivas, V. Gupta, and R. S. Katiyar, J. Appl. Phys. 104, 053507 (2008). https://doi.org/10.1063/1.2974788
  12. V. Sepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. J. Litterst, and K. D. Becker, J. Magn. Magn. Mater. 257, 377 (2003). https://doi.org/10.1016/S0304-8853(02)01279-9
  13. S. Chitra, P. Kalyani, B. Yebka, T. Mohan, E. H. Poniatowski, R. Gangadharana, and C. Julien, Mater. Chem. Phys. 65, 32 (2000). https://doi.org/10.1016/S0254-0584(99)00243-6
  14. C. M. Kanamadi, J. S. Kim, H. K. Yang, B. K. Moon, B. C. Choi, and J. H. Jeong, Appl. Phys. A 97, 575 (2009). https://doi.org/10.1007/s00339-009-5254-7