• 제목/요약/키워드: multiferroic composites

검색결과 5건 처리시간 0.02초

자기전기 고분자 복합체 (Magnetoelectric Polymer Composites)

  • 고규진;노병일;양수철
    • 한국전기전자재료학회논문지
    • /
    • 제34권4호
    • /
    • pp.229-241
    • /
    • 2021
  • Since 2010, polymer-based magnetoelectric (ME) composites have been developed with detailed investigations of multiferroic properties such as piezoelectric, magnetostrictive, and magnetoelectric, etc. In particular, as a piezoelectric polymer, poly(vinylidene fluoride) and its co-polymers have been widely used in ME composites for energy harvesting, health monitoring, environment treatment, and bio-medical applications. In this study, main research trend and selected experimental results of polymer-based ME composites are briefly reviewed with respect to composite structure as well as application field. A conclusion was drawn that the polymer-based ME composites would be feasible as flexible devices or functional membranes in the near future.

Synthesis of Multiferroic Nanocomposites by a Polyol Method

  • Shim, In-Bo;Pyun, Jeffrey;Park, Yong-Wook;Uhm, Young-Rang;Kim, Chul-Sung
    • 한국분말재료학회지
    • /
    • 제14권3호
    • /
    • pp.180-184
    • /
    • 2007
  • The material design and synthesis are of important to modem science and technology. Here, we report the synthesis of multifunctional nanomaterials with different properties: feroelecties $YMnO_3$ and multiferroic materials such as $CoFe_2O_4-YMnO_3,\;Fe_3O_4-YMnO_3,\;CoFe_2O_4-Cd_{0.85}Zn_{0.15}S,\;and\;Fe_3O_4-Cd_{0.85}Zn_{0.15}S$ nano-composites by using a chemical synthesis process. These results provide a simple and convenient synthesis process to produce multifunctional nanocomposites.

Fabrication of barium titanate-bismuth ferrite fibers using electrospinning

  • Baji, Avinash;Abtahi, Mojtaba
    • Advances in nano research
    • /
    • 제1권4호
    • /
    • pp.183-192
    • /
    • 2013
  • One-dimensional multiferroic nanostructured composites have drawn increasing interest as they show tremendous potential for multifunctional devices and applications. Herein, we report the synthesis, structural and dielectric characterization of barium titanate ($BaTiO_3$)-bismuth ferrite ($BiFeO_3$) composite fibers that were obtained using a novel sol-gel based electrospinning technique. The microstructure of the fibers was investigated using scanning electron microscopy and transmission electron microscopy. The fibers had an average diameter of 120 nm and were composed of nanoparticles. X-ray diffraction (XRD) study of the composite fibers demonstrated that the fibers are composed of perovskite cubic $BaTiO_3$-$BiFeO_3$ crystallites. The magnetic hysteresis loops of the resultant fibers demonstrated that the fibers were ferromagnetic with magnetic coercivity of 1500 Oe and saturation magnetization of 1.55 emu/g at room temperature (300 K). Additionally, the dielectric response of the composite fibers was characterized as a function of frequency. Their dielectric permittivity was found to be 140 and their dielectric loss was low in the frequency range from 1000 Hz to $10^7$ Hz.

Dielectric and Magnetic Properties of BaTiO3-LaMnO3 Composites

  • Kim, N.G.;Koo, Y.S.;Jung, J.H.
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.164-166
    • /
    • 2006
  • We have investigated the dielectric and magnetic properties of ferroelectric-antiferromagnetic $BaTiO_{3}-LaMnO_{3}$ composite with changing relative mole percents. Due to high sintering temperature, i.e. $1150^{\circ}C$, the Ba ion in $BaTiO_{3}$ seems to diffuse into $LaMnO_{3}$; resulting in $BaTiO_{3}-(La,Ba)MnO_{3}$ ferroelectric-ferromagnetic composite. At room temperature, $0.9BaTiO_{3}-0.1LaMnO_{3}$ composite exhibits considerable magnetization (${\sim}0.7\;emu/g\;at\;2000\;Oe$) and low coercive field (${\sim}5\;Oe$). Also it exhibits high dielectric constant (${\sim}560$) and low loss (${\sim}0.08$) at 10 kHz. This result may imply that $BaTiO_{3}-LaMnO_{3}$ could be suitable for a low leakage multiferroic composite.

Structural and Magnetic Properties of LiZnO Added MgFe2O4 Composite

  • Tadi, Ravindar;Kim, Yong-Il;Kim, Cheol-Gi;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.165-168
    • /
    • 2010
  • $Li_{0.1}Zn_{0.9}O$ and $MgFe_2O_4$ powders were synthesized using chemical methods and mixed in different proportions to prepare a mixture of $Li_{0.1}Zn_{0.9}O$ and $MgFe_2O_4$ that was thermally treated between 900 to $1100^{\circ}C$ for 1 hour. Structural characterization was done using X-ray powder diffraction measurements. Grain sizes and morphologies of $Li_{0.1}Zn_{0.9}O$, $MgFe_2O_4$, and $Li_{0.1}Zn_{0.9}O+MgFe_2O_4$ samples were observed using a scanning electron microscope. Variation of magnetic properties of the $Li_{0.1}Zn_{0.9}O+MgFe_2O_4$ samples due to the addition of $Li_{0.1}Zn_{0.9}O$ was studied in relation to the structural changes occurring due to the thermal treatment. In particular, changes in the cationic distribution between the tetrahedral and octahedral positions were studied with respect to the increase of the annealing temperature. Magnetization was found to be dependent on the cations distributed in the tetrahedral and octahedral sites of the $MgFe_2O_4$.