DOI QR코드

DOI QR Code

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method

다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가

  • Lee, Gi-Ha (Research Associate., Construction and Disaster Research Center, Chungnam National Univ.) ;
  • Yu, Wan-Sik (Dept. of Civil Eng., Chungnam National Univ.) ;
  • Jung, Kwan-Sue (Dept. of Civil Eng., Chungnam National Univ.) ;
  • Cho, Bok-Hwan (Div. of Water Resources, Korean Engineering Consultants Corp.)
  • 이기하 (충남대학교 건설방재연구소) ;
  • 유완식 (충남대학교 공과대학 토목공학과) ;
  • 정관수 (충남대학교 공과대학 토목공학과) ;
  • 조복환 (한국종합기술 수자원부)
  • Received : 2010.10.04
  • Accepted : 2010.11.11
  • Published : 2010.12.31

Abstract

In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.

모형의 구조, 모델링에 사용되는 자료, 매개변수 등에 포함된 다양한 불확실성 원인들은 수문모의 및 예측결과에 있어 불확실성을 야기한다. 본 연구에서는 강우-유출 및 강우-유사유출 모의가 가능한 분포형 강우-유사-유출 모형을 용담댐 상류유역인 천천유역에 적용하여 수문곡선 및 유사량곡선의 재현성을 평가하고, 다중최적화기법인 MOSCEM을 이용하여 강우-유출 모듈, 강우-유사유출 모듈의 매개변수를 독립적으로 보정한 경우(Case I과 II), 그리고 두 모듈이 결합된 강우-유사-유출 모형의 매개변수를 동시에 보정한 경우(Case III)에 대하여 Pareto 최적해를 추정하고, 이에 따른 수문 예측결과의 불확실성을 평가한다. 매개변수 불확실성의 전이에 따른 수문곡선의 불확실성 평가 결과(Case I), 모의기간 동안 고유량보다는 저유량 부분에서 불확실성 범위가 두드러졌으며, 이에 반해, 유사량곡선의 경우(Case II) 저농도보다는 고농도 부분에서 불확실성 범위가 넓게 분포하였다. 강우-유사-유출 모형의 매개변수의 불확실성을 동시에 추정한 경우 수문곡선 및 유사량곡선 모두 Case I과 II에 비해 모의기간 전반에 걸쳐 불확실성 범위가 넓게 분포되었으며, 매개 변수의 불확실성으로 인해 대상유역내 격자별 침식 및 퇴적 공간분포 양상이 상이하게 나타났다.

Keywords

References

  1. 강민구, 박승우, 임상준, 김현준(2002). “전역최적화 기법을 이용한 강우-유출모형의 매개변수 자동보정.” 한국수자원학회논문집, 한국수자원학회, 제35권, 제5호, pp. 541-552. https://doi.org/10.3741/JKWRA.2002.35.5.541
  2. 구보영, 김태순, 정일원, 배덕효(2007). “다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제9호, pp. 687-696. https://doi.org/10.3741/JKWRA.2007.40.9.687
  3. 김태순, 정일원, 구보영, 배덕효(2007). “다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(I): 방법론과 모형구축.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제9호, pp. 677-685. https://doi.org/10.3741/JKWRA.2007.40.9.677
  4. 성윤경, 김상현, 김현준, 김남원(2004). “다양한 목적함수와 최적화 방법을 달리한 SIMHYD와 TANK모형의 적용성 연구.” 한국수자원학회논문집, 한국수자원학회, 제37권, 제2호, pp. 121-131. https://doi.org/10.3741/JKWRA.2004.37.2.121
  5. 한국수자원공사(2002). 용담댐 일원 하천유량측정 등 수문조사 보고서.
  6. 한국수자원공사(2003). 용담댐 일원 하천유량측정 등 수문조사 보고서.
  7. 한국수자원공사(2007). 용담댐 일원 수자원.환경기초조사 보고서.
  8. Ambroise, B., Perrin, J.L., and Reutenauer, D. (1995). “Multicriterion validation of semi-distributed conceptual model of the water cycle in Fecht catchment (Vosgesmassif, France).” Water Resources Research, Vol. 31, No. 6, pp. 1467-1481. https://doi.org/10.1029/94WR03293
  9. Beven, K. (1989). “Changing ideas in hydrology-The case of physically-based models.” Journal of Hydrology, Vol. 105, pp. 157-172. https://doi.org/10.1016/0022-1694(89)90101-7
  10. Beven, K., and Binley, A.M. (1992). “The future of distributed models: model calibration and uncertainty prediction.” Hydrological Processes, Vol. 6, No. 3, pp. 279-298. https://doi.org/10.1002/hyp.3360060305
  11. Beven, K. (2003). “On environmental models of everywhere on the GRID.” Hydrological Processes, Vol. 17, No. 1, pp. 171-174. https://doi.org/10.1002/hyp.5090
  12. Beven, K. (2006), “A manifesto for the equifinality thesis.” Journal of Hydrology, Vol. 320, No. 1-2, pp. 18-36. https://doi.org/10.1016/j.jhydrol.2005.07.007
  13. Bos, A., and Vreng, A.D. (2006). Parameter optimization of the HYMOD model using SCEM-UA and MOSCEM-UA, Modelling Geo-Ecological Systems Computational Bio- and Physical Geography Faculty of Science, University of Amsterdam.
  14. Boyle, D.P., Gupta, H.V., and Sorooshian, S. (2000). “Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods.” Water Resources Research, Vol, 36, No. 12, pp. 3663-3674. https://doi.org/10.1029/2000WR900207
  15. Duan, Q. (1991). A global optimization strategy for efficient and effective calibration of hydrologic models, Ph.D. dissertation, University of Arizona, Tucson.
  16. Duan, Q., Sorooshian, S. and Gupta, V.K. (1992). “Effective and efficient global optimization for conceptual rainfall-runoff models.” Water Resources Research, Vol. 284, pp. 1015-1031. https://doi.org/10.1029/91WR02985
  17. Franchini, M. (1996). “Use of a genetic algorithm combined with a local search method for automatic calibration of conceptual rainfall-runoff models.” Hydrological Sciences-Journal-des Sciences Hydrologiques, Vol. 41, No. 1, pp. 21-39. https://doi.org/10.1080/02626669609491476
  18. Franks, S.W., Uhlenbrook, S., and Etchevers, P. (2006). Hydrological simulation, in Hydrology 2020: An integrating Science to Meet World Water Challenges, edited by Oki, T., Valeo, C., and Heal, K., pp. 105-122, IAHS Press, Wallingford.
  19. Gupta, H.V., Sorooshian, S., Hogue, T.S., and Boyle, D.P. (2003). “Advances in automatic calibration of watershed models.” in Advances in calibration of watershed models, edited by Duan, Q., Sorooshian, S., Gupta, H.V., Rosseau, A. and Turcotte, R., pp. 29-47, AGU, Washington, D.C.
  20. Gupta, H.V., Sorooshian, S., and Yapo, P.O. (1998). “Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information.” Water Resources Research, Vol. 134, No. 4, pp. 751-763. https://doi.org/10.1029/97WR03495
  21. Madsen, H. (2003). “Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives.” Advances in Water Resources, Vol. 26, pp. 205-216. https://doi.org/10.1016/S0309-1708(02)00092-1
  22. Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Chisci, G., and Torri, D. (1998). “The European soil erosion model(EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments.” Earth Surface Process and Landforms, Vol. 23, pp. 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  23. Mroczkowski, M., Raper, G.P., and Kuczera, G. (1997). “The quest for more powerful validation of conceptual catchment models.” Water Resources Research, Vol. 33, No. 10, pp. 2325-2336. https://doi.org/10.1029/97WR01922
  24. Savenije H.H.G. (2001), “Equifinality, a blessing in disguise?” Hydrological Processes, Vol. 15, pp. 2835- 2838. https://doi.org/10.1002/hyp.494
  25. Sayama. (2003). Evaluation of reliability and complexity of rainfall-sediment-runoff models. Master's Thesis, Kyoto University, pp. 5-10.
  26. Sorooshian, S., and Dracup, J.A. (1980), “Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases.” Water Resources Research, Vol. 16, No. 2, pp. 430-442. https://doi.org/10.1029/WR016i002p00430
  27. Sorooshian, S., and Gupta, V.K. (1995). “Model calibration, in computer models of watershed hydrology.”edited by Singh, V.P., pp. 23-68, Water Resources Publications, Highland Ranch.
  28. Todini, E. (1988). “Rainfall-runoff modeling-past, present and future.” Journal of Hydrology, Vol. 100, pp. 341- 352. https://doi.org/10.1016/0022-1694(88)90191-6
  29. Tachikawa, Y., Nagatani, G., and Takara, K. (2004). “Develpment of stage-discharge relationship equation incorporating saturated-unsaturated flow mechanism.” Annual Journal of Hydraulic Engineering, JSCE, Vol. 48, pp. 7-12. (Japanese with English abstract) https://doi.org/10.2208/prohe.48.7
  30. Tang, Y., Reed, P., and Wagener, T. (2005). “How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration.” Hydrology and Earth System Sciences Discussions, Vol. 2, pp. 2465-2520. https://doi.org/10.5194/hessd-2-2465-2005
  31. Vieux, B.E. (2004). Distributed hydrologic modeling using GIS, Kluwer Academic Publishers.
  32. Vrugt, J.A., Gupta, H.V., Bouten, W., and Sorooshian, S. (2003a). “A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters.” Water Resources Research, Vol. 39, No. 8, 1201, doi:10.1029/2002WR 001642.
  33. Vrugt, J.A., Gupta, H.V., Bastidas, L.A., Bouten, W., and Sorooshian. S. (2003b). “Effective and efficient algorithm for multi objective optimization of hydrologic models.” Water Resources Research, Vol. 39, No. 8, 1214, doi:10.1029/2002WR001746.
  34. Wheater H.S., Jakeman, A.J., and Beven, K. (1993). “Progress and directions in rainfall-runoff modeling.” in Modeling change in environmental systems, edited by Jakeman, A.J., Bech, M.B., and McAleer, M.J., pp. 101-132, John Wiley and Sons, Chichester.
  35. Wang, Q.J. (1991). “The genetic algorithm and its application to calibrating conceptual rainfall-runoff models.” Water Resources Research, Vol. 27, No. 9, pp. 2467-2471. https://doi.org/10.1029/91WR01305
  36. Yapo, P.O., Gupta, H.V., and Sorooshian, S. (1998). “Multi-objective global optimization for hydrologic models.” Journal of Hydrology, Vol. 204, pp. 83-97. https://doi.org/10.1016/S0022-1694(97)00107-8
  37. Yang, C.T. (1972). “Unit stream power and sediment transport.” Journal of the Hydraulics Division, ASCE, Vol. 98, No. HY10, pp. 1805-1826.
  38. Yang, C.T. (1973). “Incipient motion and sediment transport.” Journal of the Hydraulics Division, ASCE, Vol. 99, No. HY10, pp. 1679-1704.
  39. Zitzler, E., and Thiele, L. (1999). “Multi-objective evolutionary algorithm: A comparative case study and the strength pareto approach.” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, pp. 257-271. https://doi.org/10.1109/4235.797969