References
- 강민구, 박승우, 임상준, 김현준(2002). “전역최적화 기법을 이용한 강우-유출모형의 매개변수 자동보정.” 한국수자원학회논문집, 한국수자원학회, 제35권, 제5호, pp. 541-552. https://doi.org/10.3741/JKWRA.2002.35.5.541
- 구보영, 김태순, 정일원, 배덕효(2007). “다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제9호, pp. 687-696. https://doi.org/10.3741/JKWRA.2007.40.9.687
- 김태순, 정일원, 구보영, 배덕효(2007). “다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(I): 방법론과 모형구축.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제9호, pp. 677-685. https://doi.org/10.3741/JKWRA.2007.40.9.677
- 성윤경, 김상현, 김현준, 김남원(2004). “다양한 목적함수와 최적화 방법을 달리한 SIMHYD와 TANK모형의 적용성 연구.” 한국수자원학회논문집, 한국수자원학회, 제37권, 제2호, pp. 121-131. https://doi.org/10.3741/JKWRA.2004.37.2.121
- 한국수자원공사(2002). 용담댐 일원 하천유량측정 등 수문조사 보고서.
- 한국수자원공사(2003). 용담댐 일원 하천유량측정 등 수문조사 보고서.
- 한국수자원공사(2007). 용담댐 일원 수자원.환경기초조사 보고서.
- Ambroise, B., Perrin, J.L., and Reutenauer, D. (1995). “Multicriterion validation of semi-distributed conceptual model of the water cycle in Fecht catchment (Vosgesmassif, France).” Water Resources Research, Vol. 31, No. 6, pp. 1467-1481. https://doi.org/10.1029/94WR03293
- Beven, K. (1989). “Changing ideas in hydrology-The case of physically-based models.” Journal of Hydrology, Vol. 105, pp. 157-172. https://doi.org/10.1016/0022-1694(89)90101-7
- Beven, K., and Binley, A.M. (1992). “The future of distributed models: model calibration and uncertainty prediction.” Hydrological Processes, Vol. 6, No. 3, pp. 279-298. https://doi.org/10.1002/hyp.3360060305
- Beven, K. (2003). “On environmental models of everywhere on the GRID.” Hydrological Processes, Vol. 17, No. 1, pp. 171-174. https://doi.org/10.1002/hyp.5090
- Beven, K. (2006), “A manifesto for the equifinality thesis.” Journal of Hydrology, Vol. 320, No. 1-2, pp. 18-36. https://doi.org/10.1016/j.jhydrol.2005.07.007
- Bos, A., and Vreng, A.D. (2006). Parameter optimization of the HYMOD model using SCEM-UA and MOSCEM-UA, Modelling Geo-Ecological Systems Computational Bio- and Physical Geography Faculty of Science, University of Amsterdam.
- Boyle, D.P., Gupta, H.V., and Sorooshian, S. (2000). “Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods.” Water Resources Research, Vol, 36, No. 12, pp. 3663-3674. https://doi.org/10.1029/2000WR900207
- Duan, Q. (1991). A global optimization strategy for efficient and effective calibration of hydrologic models, Ph.D. dissertation, University of Arizona, Tucson.
- Duan, Q., Sorooshian, S. and Gupta, V.K. (1992). “Effective and efficient global optimization for conceptual rainfall-runoff models.” Water Resources Research, Vol. 284, pp. 1015-1031. https://doi.org/10.1029/91WR02985
- Franchini, M. (1996). “Use of a genetic algorithm combined with a local search method for automatic calibration of conceptual rainfall-runoff models.” Hydrological Sciences-Journal-des Sciences Hydrologiques, Vol. 41, No. 1, pp. 21-39. https://doi.org/10.1080/02626669609491476
- Franks, S.W., Uhlenbrook, S., and Etchevers, P. (2006). Hydrological simulation, in Hydrology 2020: An integrating Science to Meet World Water Challenges, edited by Oki, T., Valeo, C., and Heal, K., pp. 105-122, IAHS Press, Wallingford.
- Gupta, H.V., Sorooshian, S., Hogue, T.S., and Boyle, D.P. (2003). “Advances in automatic calibration of watershed models.” in Advances in calibration of watershed models, edited by Duan, Q., Sorooshian, S., Gupta, H.V., Rosseau, A. and Turcotte, R., pp. 29-47, AGU, Washington, D.C.
- Gupta, H.V., Sorooshian, S., and Yapo, P.O. (1998). “Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information.” Water Resources Research, Vol. 134, No. 4, pp. 751-763. https://doi.org/10.1029/97WR03495
- Madsen, H. (2003). “Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives.” Advances in Water Resources, Vol. 26, pp. 205-216. https://doi.org/10.1016/S0309-1708(02)00092-1
- Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Chisci, G., and Torri, D. (1998). “The European soil erosion model(EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments.” Earth Surface Process and Landforms, Vol. 23, pp. 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
- Mroczkowski, M., Raper, G.P., and Kuczera, G. (1997). “The quest for more powerful validation of conceptual catchment models.” Water Resources Research, Vol. 33, No. 10, pp. 2325-2336. https://doi.org/10.1029/97WR01922
- Savenije H.H.G. (2001), “Equifinality, a blessing in disguise?” Hydrological Processes, Vol. 15, pp. 2835- 2838. https://doi.org/10.1002/hyp.494
- Sayama. (2003). Evaluation of reliability and complexity of rainfall-sediment-runoff models. Master's Thesis, Kyoto University, pp. 5-10.
- Sorooshian, S., and Dracup, J.A. (1980), “Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases.” Water Resources Research, Vol. 16, No. 2, pp. 430-442. https://doi.org/10.1029/WR016i002p00430
- Sorooshian, S., and Gupta, V.K. (1995). “Model calibration, in computer models of watershed hydrology.”edited by Singh, V.P., pp. 23-68, Water Resources Publications, Highland Ranch.
- Todini, E. (1988). “Rainfall-runoff modeling-past, present and future.” Journal of Hydrology, Vol. 100, pp. 341- 352. https://doi.org/10.1016/0022-1694(88)90191-6
- Tachikawa, Y., Nagatani, G., and Takara, K. (2004). “Develpment of stage-discharge relationship equation incorporating saturated-unsaturated flow mechanism.” Annual Journal of Hydraulic Engineering, JSCE, Vol. 48, pp. 7-12. (Japanese with English abstract) https://doi.org/10.2208/prohe.48.7
- Tang, Y., Reed, P., and Wagener, T. (2005). “How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration.” Hydrology and Earth System Sciences Discussions, Vol. 2, pp. 2465-2520. https://doi.org/10.5194/hessd-2-2465-2005
- Vieux, B.E. (2004). Distributed hydrologic modeling using GIS, Kluwer Academic Publishers.
- Vrugt, J.A., Gupta, H.V., Bouten, W., and Sorooshian, S. (2003a). “A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters.” Water Resources Research, Vol. 39, No. 8, 1201, doi:10.1029/2002WR 001642.
- Vrugt, J.A., Gupta, H.V., Bastidas, L.A., Bouten, W., and Sorooshian. S. (2003b). “Effective and efficient algorithm for multi objective optimization of hydrologic models.” Water Resources Research, Vol. 39, No. 8, 1214, doi:10.1029/2002WR001746.
- Wheater H.S., Jakeman, A.J., and Beven, K. (1993). “Progress and directions in rainfall-runoff modeling.” in Modeling change in environmental systems, edited by Jakeman, A.J., Bech, M.B., and McAleer, M.J., pp. 101-132, John Wiley and Sons, Chichester.
- Wang, Q.J. (1991). “The genetic algorithm and its application to calibrating conceptual rainfall-runoff models.” Water Resources Research, Vol. 27, No. 9, pp. 2467-2471. https://doi.org/10.1029/91WR01305
- Yapo, P.O., Gupta, H.V., and Sorooshian, S. (1998). “Multi-objective global optimization for hydrologic models.” Journal of Hydrology, Vol. 204, pp. 83-97. https://doi.org/10.1016/S0022-1694(97)00107-8
- Yang, C.T. (1972). “Unit stream power and sediment transport.” Journal of the Hydraulics Division, ASCE, Vol. 98, No. HY10, pp. 1805-1826.
- Yang, C.T. (1973). “Incipient motion and sediment transport.” Journal of the Hydraulics Division, ASCE, Vol. 99, No. HY10, pp. 1679-1704.
- Zitzler, E., and Thiele, L. (1999). “Multi-objective evolutionary algorithm: A comparative case study and the strength pareto approach.” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, pp. 257-271. https://doi.org/10.1109/4235.797969