DOI QR코드

DOI QR Code

Urushiol에 의해 유도된 장수버섯 laccase isoenzyme의 정제 및 특성

Purification and Characterization of Urushiol Induced Laccase Isoenzyme from Fomitella fraxinea

  • 최한석 (농촌진흥청 국립농업과학원 발효이용과) ;
  • 박효숙 (원광대학교 농화학과) ;
  • 여수환 (농촌진흥청 국립농업과학원 발효이용과) ;
  • 정석태 (농촌진흥청 국립농업과학원 발효이용과) ;
  • 최지호 (농촌진흥청 국립농업과학원 발효이용과) ;
  • 김명곤 (전북대학교 바이오식품공학과)
  • Choi, Han-Seok (Fermentation and Food Processing Division, National Academy of Agricultural Science, RDA) ;
  • Park, Hyo-Suk (Department of Agricultural Chemistry, Wonkwang University) ;
  • Yeo, Soo-Hwan (Fermentation and Food Processing Division, National Academy of Agricultural Science, RDA) ;
  • Jeong, Seok-Tae (Fermentation and Food Processing Division, National Academy of Agricultural Science, RDA) ;
  • Choi, Ji-Ho (Fermentation and Food Processing Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Myung-Kon (Department of Bio Food Technology, Chonbuk National University)
  • 투고 : 2010.11.04
  • 심사 : 2010.12.13
  • 발행 : 2010.12.31

초록

본 연구는 옻나무의 allergy유발성분으로 알려진 urushiol이 장수버섯(Fomitella fraxinea)의 laccase유도에 미치는 영향을 살펴보고 laccase isoenzyme을 분리 정제하여 그 특성을 살펴보았다. 장수버섯의 laccase활성과 균체생산량은 배양 10일째 최대치를 나타내었으며 urushiol첨가에 의해서 효소활성은 2.45배, 균체량은 1.5배 높아졌다. Laccase생산용 배지에서 Cu와 Mn이온을 결핍시켰을 경우 효소활성은 3.8-9.2배 낮아졌으나 균체생산에는 영향이 비교적 적었다. Anion exchange, hydrophobic interaction 및 gel filtration chromatography를 통하여 2종의 laccase isoenzyme(Lac1, Lac2)을 정제하였다. 이 효소는 단량체로 각각 67 kDa(Lac1)과 66 kDa(Lac2)의 분자량을 가지고 있었으며, 등전점은 3.67과 3.81이었다. 두 효소 모두 pH 4.5-5.0, $30-35^{\circ}C$에서 최대 활성을 보였으며, $Fe^{2+}$, $Mg^{2+}$, $Na^+$에 의해서 저해를 받았다. 또한, EDTA와 sodium azide에 의해서도 효소활성이 강하게 저해 받았다.

The influence of urushiol, as an allergen on laccase property of Fomitella fraxinea was investigated. The enzyme production was reached to the highest level after 10 days, cultivation and the activity and mycelial biomass were increased by 2.5 and 1.5 folds, respectively, by adding urushiol in the culture medium. In liquid cultures using a Cu Mn-free medium, laccase lactivity was decreased by 3.8-9.2 folds, with similar dry cell weight. Two isoenzymes, were purified using anion exchange, hydrophobic interaction and size-exclusion chromatographies. Both isoenzymes are monomeric proteins, with $M_W$ around 67 kDa(Lac1) and 66 kDa(Lac2), and isoelectric points of 3.67 and 3.81. The optimal conditions for purified isoenzymes were found to be pH 4.5-5.0 and $30-35^{\circ}C$. Activity decreased by the addition of $Fe^{2+}$, $Mg^{2+}$, $Na^+$, and strongly inhibited by EDTA and sodium azide.

키워드

참고문헌

  1. 김명곤. 1988. Trametes trogii에 의한 laccase의 생산 및 특성에 관한 연구. 전북대학교 박사학위 논문.
  2. 윤재돈, 이종숙, 이경아, 정님욱, 하효철, 이재성. 2003. Fomitella fraxinea에 의한 laccase의 대량생산. 한국균학회지 31:181-186. https://doi.org/10.4489/KJM.2003.31.3.181
  3. 장현유, 차동열, 강안석, 홍인표, 김광포, 석순자, 류영진, 성재모. 1995. 장수버섯의 배양적 특성. 한국균학회지 23:238-245.
  4. 조수묵, 이재훈, 한상배, 김환묵, 유승헌, 유익동. 1995a. Fomitella fraxinea 로부터 분리한 면역활성 다당류 (1) - 중성염 용액 추출 다당류의 특성. 한국균학회지 23:332-339.
  5. 조수묵, 이재훈, 한상배, 김환묵, 유승헌, 유익동. 1995b. Fomitella fraxinea 로부터 분리한 면역활성 다당류 (2) - 열수추출 다당류의 분리 및 특성. 한국균학회지 23:340-347.
  6. 홍재식, 김명곤, 김윤희, 이종배. 1987. Coriolus versicolor에 의한 laccase 생산 및 성질에 관한 연구. 한국균학회지 15:99-107.
  7. Bao, W., O’Malley, D. M., Whetten, R. and Sederoff, R. R. 1993. A laccase associated with lignification in loblolly pine xylem. Science 260:672-674. https://doi.org/10.1126/science.260.5108.672
  8. Bollag, J. M. and Leonowiez, A. 1984. Comparative studies of extracellular fungal laccases. Appl. Environ. Microbiol. 48:849-854.
  9. Buswell, J. A., Cai, Y. J. and Chang, S. T. 1993. Fungal and substrate associated factors affecting the ability of individual mushroom species to utilize different lignocellulosic growth substrates. In: Mushroom biology and mushroom products, pp. 141-150. Eds. S. T. Chang, A. B. John and S. W. Chiu. The Chinese University Press, Hong Kong.
  10. Cambria, M. T., Cambria, A., Raguda, S. and Rizzarelli, E. 2000. Prduction, purification, and properties of an extracelluar laccase form Rigidoporus lignosus. Protein Expr. Purif. 18:141-147. https://doi.org/10.1006/prep.1999.1126
  11. Cho, S. M., Koshino, H., Yu, S. H. and Yoo, I. D. 1998. A mannofucogalactan, fomitellan A, with mitogenic effect from fruit bodies of Fomitella fraxinea (Imaz). Carbohydr. Polym. 37:13-18. https://doi.org/10.1016/S0144-8617(98)00041-1
  12. Choi, H. S., Kim, M. K., Park, H. S., Yun, S. E., Mun, S. P., Kim, J. S., Sapkota, K., Kim, S., Kim, T. Y. and Kim, S. J. 2007. Biological Detoxification of Lacquer Tree (Rhus verniciflua Stokes) Stem Bark by Mushroom Species. Food Sci. Biotech. 16:935-942.
  13. Couto, S. R. and Herrera, J. L. T. 2006. Industrial and biotechnological applications of laccase: A review. Biotechnol. Adv. 24:500-513. https://doi.org/10.1016/j.biotechadv.2006.04.003
  14. Elisashvili, V. and Kachlishvili, E. 2009. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotech. 144:37-42. https://doi.org/10.1016/j.jbiotec.2009.06.020
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  16. Lee, J. S., Baik, H. S. and Park, S. S. 2006. Purification and Characterization of Two Novel Fibrinolytic Proteases from Mushroom, Fomitella fraxinea. J. Microbiol. Biotech. 16:264-271.
  17. Lettera, V., Piscitelli, A., Leo, G., Birolo, L., Pezzella, C. and Sannia, G. 2010. Identification of a new member of Pleurotus ostreatus laccase family from mature fruiting body. Fungal Biol. 114:724-730. https://doi.org/10.1016/j.funbio.2010.06.004
  18. Lowry, W. G., Rosenbrough, N. J. and Randall, A. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265.
  19. Minussi, R. C., Pastore, G. M. and Durán, N. 2002. Potential applications of laccase in the food industry. Trends Food Sci. Technol. 13:205-216. https://doi.org/10.1016/S0924-2244(02)00155-3
  20. Minussi, R. C., Pastore, G. M. and Durán, N. 2007. Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent. Bioresour. Technol. 98:158-164. https://doi.org/10.1016/j.biortech.2005.11.008
  21. Nakatani, M., Hibi, M., Minoda, M., Ogawa, J., Yokozeki, K. and Shimizu, S. 2010. Two laccase isoenzymes and a peroxidase of a commercial laccase-producing basidiomycete, Trametes sp. Ha1. New Biotech. 27:317-323. https://doi.org/10.1016/j.nbt.2010.02.008
  22. Park, K. M. and Park, S. S. 2008. Purification and Characterization of Laccase from Basidiomycete Fomitella fraxinea. J. Microbiol. Biotech. 18:670-675.
  23. Petroski, R. J., Peczynska-Czoch, W. and Rosazza, J. P. 1980. Analysis, production and isolation of an extracellular laccase from Polyporus anceps, Appl. Environ. Microbiol. 40:1003.
  24. Rivero-Cruz, J. F., Chvez, D., Bautista, B. H., Anaya, A. L. and Mata, R. 1997. Separation and characterization of Metopium brownie urushiol components. Phytochem. 45:1003-1008. https://doi.org/10.1016/S0031-9422(97)00032-0
  25. Thurston, C. F. 1994. The structure and function of fungal laccases. Microbiol. 140:19-26. https://doi.org/10.1099/13500872-140-1-19
  26. Widsten, P. and Kandelbauer, A. 2008. Laccase applications in the forest products industry: A review. Enzyme Microbial Technol. 42:293-307. https://doi.org/10.1016/j.enzmictec.2007.12.003
  27. Xu, F. 2005. Applications of oxidoreductases: Recent progress. Ind. Biotech. 1:38-50. https://doi.org/10.1089/ind.2005.1.38
  28. Yoshida, H. 1883. Chemistry of lacquer (urishi). Part 1. J. Chem. Soc. 43:472-486. https://doi.org/10.1039/ct8834300472
  29. Zouari-Mechichi, H., Mechichi, T., Dhouib, A., Sayadi, S., Martinez, A. T. and Martinez, M. J. 2006. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb. Technol. 39:141-148. https://doi.org/10.1016/j.enzmictec.2005.11.027