DOI QR코드

DOI QR Code

Photoinduction of UV-absorbing Compounds and Photo-protective Pigment in Phaeocystis pouchetii and Porosira glacialis by UV Exposure

실내 자외선 노출 실험을 통한 극지 식물플랑크톤(Phaeocystis pouchetii, Porosira glacialis)의 자외선 흡수물질 생성 연구

  • Ha, Sun-Yong (Marine Environmental Science Department, College of Science and Technology Hanyang University) ;
  • Kang, Sung-Won (Department of Oceanography, Environmental and Marin Sciences and Technology Pukyong National University) ;
  • Park, Mi-Ok (Department of Oceanography, Environmental and Marin Sciences and Technology Pukyong National University) ;
  • Kim, Young-Nam (Korea Polar Research Institute, KORDI) ;
  • Kang, Sung-Ho (Korea Polar Research Institute, KORDI) ;
  • Shin, Kyung-Hoon (Marine Environmental Science Department, College of Science and Technology Hanyang University)
  • 하선용 (한양대학교 과학기술대학 해양환경과학과) ;
  • 강성원 (부경대학교 환경.해양대학 해양학과) ;
  • 박미옥 (부경대학교 환경.해양대학 해양학과) ;
  • 김영남 (한국해양연구원 부설 극지연구소) ;
  • 강성호 (한국해양연구원 부설 극지연구소) ;
  • 신경훈 (한양대학교 과학기술대학 해양환경과학과)
  • Received : 2010.08.08
  • Accepted : 2010.11.14
  • Published : 2010.12.30

Abstract

Herein, we compared the production rate of UV-absorbing compounds (mycosporine-like amino acids) and carotenoids in two phytoplankton species--Phaeocystis pouchetii and Porosira glacialis--which are the dominant species in Polar Regions under artificial UV radiation conditions. P. pouchetii exposed to UVR and PAR evidenced reductions in the carbon fixation rate, and was not significantly influenced by differing light conditions. However, the concentrations of UV-absorbing compounds and photo-protective pigments of P. pouchetii were increased with increasing exposure time, but P. glacialis maintained constant levels during the UVR exposure experiment. The production rates of MAAs showed a reverse phase between the two phytoplankton species. The carbon fixation rate of P. pouchetii cells was inhibited by exposure to UV radiation, but the production rates of MAAs in P. pouchetii were increased under UV radiation exposure. The carbon fixation rate and production rate of MAAs in P. glacialis were simultaneously inhibited under UV radiation exposure conditions. These results provide us with new information regarding the processes involved in the production of UV-absorbing compounds and photoprotective pigments in two phytoplankton species.

Keywords

References

  1. Adams NL, Shick JM (1996) Mycosporine-like Amino Acids Provide Protection Against Ultraviolet Radiation in Eggs of the Green Sea Urchin Strongylocentrotus droebachiensis. Photochem Photobiol 64(1):149-158 https://doi.org/10.1111/j.1751-1097.1996.tb02435.x
  2. Behrenfeld MJ, Lean DRS, Lee HII (1995) Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J Phycol 31(1):25-36 https://doi.org/10.1111/j.0022-3646.1995.00025.x
  3. Ben-Amotz A, Shaish A, Avron M (1989) Mode of Action of the Massively Accumulated $\beta$-Carotene of Dunaliella bardawil in Protecting the Alga against Damage by Excess Irradiation. Plant Physiol 91(3):1040-1043 https://doi.org/10.1104/pp.91.3.1040
  4. Bidigare RR, Ondrusek ME, Kennicutt II MC, Harvey HR, Hoham RW, Macko SA (1995) Evidence for a photoprotective function for secondary carotenoids of snow algae. J Phycol 29(4):427-434 https://doi.org/10.1111/j.1529-8817.1993.tb00143.x
  5. Boelen P, De Boer MK, Kraay GW, Veldhuis MJW, Buma AGJ (2000) UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic Ocean. Mar Ecol Prog Ser 193:1-9 https://doi.org/10.3354/meps193001
  6. Davidson AT, Bramich D, Marchant HJ, McMinn A (1994) Effects of UV-B irradiation on growth and survival of Antarctic marine diatoms. Mar Biol 119(4):507-515 https://doi.org/10.1007/BF00354312
  7. Dohler G, Hagmeier E, Grigoleit E, Krause KD (1991) Impact of solar UV radiation on uptake of 15N-ammonia and 15N-nitrate by marine diatoms and natural phytoplankton. Biochem Physiol Pflanz 187:293-303 https://doi.org/10.1016/S0015-3796(11)80206-4
  8. Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporineglycine. Comp Biochem Physiol 112:105-114 https://doi.org/10.1016/0305-0491(95)00086-N
  9. Falkowski PG, Owens TG (1980) Light--Shade Adaptation: Two strategies in marine phytoplankton. Plant Physiol 66(4):592-595 https://doi.org/10.1104/pp.66.4.592
  10. Fryxell GA, Kendrick GA (1988) Austral spring microalgae across the Weddell Sea ice edge: spatial relationships found along a northward transect during AMERIEZ 83. Deep-Sea Res Part A 35(1):1-20 https://doi.org/10.1016/0198-0149(88)90054-4
  11. Garcia-Pichel F (1994) A model for internal self-shading in phlaktonic orgaisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39(7):1704-1717 https://doi.org/10.4319/lo.1994.39.7.1704
  12. Garrison DL, Buck KR, Fryxell GA (1987) Algal assemblages in antarctic pack ice and in ice-edge plankton. J Phycol 23:564-572 https://doi.org/10.1111/j.1529-8817.1987.tb04206.x
  13. Goes JI, Handa N, Taguchi S, Hama T (1994) Effect of UVB radiation on the fatty acid composition of the marine phytoplankter Tetraselmis sp.: relationship to cellular pigments. Mar Ecol Prog Ser 114:259-274 https://doi.org/10.3354/meps114259
  14. Goodwin TW (1986) Metabolism, nutrition, and function of carotenoids. Annu Rev Nutr 6:273-297 https://doi.org/10.1146/annurev.nu.06.070186.001421
  15. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229-239 https://doi.org/10.1139/m62-029
  16. Hader DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6(3):267-285 https://doi.org/10.1039/b700020k
  17. Hader DP, Kumar HD, Smith RC, Worrest RC (1998) Effects on aquatic ecosystems. J Photochem Photobiol B: Biol 46(1-3):53-68 https://doi.org/10.1016/S1011-1344(98)00185-7
  18. Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthestic production of a marine phytoplankton population using a stable isotope. Mar Biol 73:31-36 https://doi.org/10.1007/BF00396282
  19. Hannach G, Sigleo AC (1998) Photoinduction of UVabsorbing compounds in six species of marine phytoplankton. Mar Ecol Prog Ser 174:207-222 https://doi.org/10.3354/meps174207
  20. Helbling EW, Chalker BE, Dunlap WC, Holm-Hansen O, Villafane VE (1996) Photoacclimation of antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204(1-2):85-101 https://doi.org/10.1016/0022-0981(96)02591-9
  21. Helbling EW, Villafane V, Ferrario M, Holm-Hansen O (1992) Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar Ecol Prog Ser 80:89-100 https://doi.org/10.3354/meps080089
  22. Jeffrey SW, Wright SW (1997) Qualitative and quantitative HPLC analysis of SCOR reference algal cultures. In: Jeffrey SW, Mantoura RFC, Wright SW (eds), Phytoplankton pigments in oceanography: guidelines to modern methods, vol 10. UNESCO Monographs on Oceanographic Methodology, Paris, pp 343-360
  23. Kang SH, Kang JS (1998) Phaeocystis antarctica Karsten as an indispecies of environmental changes in the Antarctic. Kor J Polar Res 9(1):17-35
  24. Karentz D (1994) Prevention of ultraviolet radiation damage in Antarctic marine invertebrates. In: Biggs RH, Joyner M. Stratospheric ozone depletion/UVB radiation in the biosphere: Proceedings of NATO advanced research workshop. Springer-Verlag, Berlin, 175 p
  25. Karentz D (2001) Chemical defenses of marine organisms against solar radiation exposure: UV-absorbing mycosporinelike amino acids and scytonemin. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, Florida, USA, pp 481-520
  26. Karentz D, Cleaver JE, Mitchell DL (1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27(3):326-341 https://doi.org/10.1111/j.0022-3646.1991.00326.x
  27. Klisch M, Häder DP (2002) Wavelength dependence of mycosporine –like amino acids synthesis in Gyrodinium dorsum. J Photochem Photobiol B: Biol 66:60-66 https://doi.org/10.1016/S1011-1344(01)00276-7
  28. Laurion I, Lami A, Sommaruga R (2002) Distribution of mycosporine-like amino acids and photprotective carotenoids among freshwatr phytoplankton assemblages. Aquat Microb Ecol 26:283-294 https://doi.org/10.3354/ame026283
  29. Lorenzen CJ (1979) Ultaviolet radiation and phytoplankton photosynthesis. Limnol Oceanogr 24(6):1117-1120 https://doi.org/10.4319/lo.1979.24.6.1117
  30. Marchant HJ, Davidson AT, Kelly GJ (1991) UV-B protecting compounds in the marine alga Phaeocystis pouchetii from Antarctica. Mar Biol 109(3):391-395 https://doi.org/10.1007/BF01313504
  31. Moeller RE, Gilroy S, Williamson CE, Grad G, Sommaruga R (2005) Dietary acquisition of photoprotective compounds (mycosporine-like amino acids, carotenoids) and acclimation to ulraviolet radiation in a freshwater copepod. Limnol Oceanogr 50(2):427-439 https://doi.org/10.4319/lo.2005.50.2.0427
  32. Moisan TA, Mitchell BG (2001) UV absorption by mycosporine- like amino acids in Phaeocystis Antarctica Karsten induced by photosynthetically available radiation. Mar Biol 138:217-227 https://doi.org/10.1007/s002270000424
  33. Park MO, Park JS (1997) HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. J Oceanol Soc Korea 32:46-55
  34. Pearl HW, Tucker J, Bland PT (1983) Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms. Limnol Oceanogr 28:847-857 https://doi.org/10.4319/lo.1983.28.5.0847
  35. Rawlings TA (1996) Shields against ultraviolet radiation: an additional protective role for the egg capsules of benthic marine gastropods. Mar Ecol Prog Ser 136:81-95 https://doi.org/10.3354/meps136081
  36. Riegger L, Robinson D (1997) Photoinduction of UVabsorbing compounds in Antarctic diatoms and Phaeocystis antarctica. Mar Ecol Prog Ser 160:13-25 https://doi.org/10.3354/meps160013
  37. Roy S (2000) Strategies for the minimization of UV-induced damage. In: de Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 177-205
  38. Shick JM, Dunlap WC, Chalker BE, Banaszak AT, Rosenzweig TK (1992) Survey of ultraviolet radiation absorbing mycosporine-like amino acids in organs of coral reef holothuroids. Mar Ecol Prog Ser 90:139-148 https://doi.org/10.3354/meps090139
  39. Singh SP, Kumari S, Rastogi RP, Singh KL, Sinha RP (2008) Mycosporine-like amino acids (MAAs): Chemical structure, biosynthesis and significance as UV-absorbing/ screening compounds. Ind J Exp Biol 46:7-17
  40. Sinha RP, Hader DP (2002) Life under solar UV radiation in aquatic organisms. Adv Space Res 30(6):1547-1556 https://doi.org/10.1016/S0273-1177(02)00370-8
  41. Sinha RP, Hader D-P (2008) UV-protectants in cyanobacteria. Plant Sci 174(3):278-289 https://doi.org/10.1016/j.plantsci.2007.12.004
  42. Sinha RP, Singh SP, Hader DP (2007) Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol B: Biol 89(1):29-35 https://doi.org/10.1016/j.jphotobiol.2007.07.006
  43. Smith RC, Prezelin B, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, Macintyre S., Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952-959 https://doi.org/10.1126/science.1546292
  44. Sommaruga R, Garicia-Pichel F (1999) UV-absorbing compounds in planktonic and benthic organisms from a highmountain lake. Arch Hydrobiol 144:225-269
  45. Tartarotti B, Sommaruga R (2002) The effect of different methanol concentrations and temperatures on the extraction of mycosporine-like amino acids (MAAs) in algae and zooplankton. Arch Hydrobiol 154(4):691-703 https://doi.org/10.1127/archiv-hydrobiol/154/2002/691
  46. Vernet M, Neori A, Haxo FT (1989) Spectral properties and photosynthetic action in red-tide populations of Prorocentrum micans and Gonyaulax polyedra. Mar Biol 103(3):365-371 https://doi.org/10.1007/BF00397271
  47. Vernet M, Whitehead K (1996) Release of ultraviolet-absorbing compounds by the red-tide dinoflagellate Lingulodinium polyedra. Mar Biol 127(1):35-44 https://doi.org/10.1007/BF00993641
  48. Volkmann M, Gorbushina AA (2006) A broadly applicable method for extraction and characterization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS 255(2):286-295 https://doi.org/10.1111/j.1574-6968.2006.00088.x
  49. Whitehead K, Karentz D, Hedges JI (2001) Mycosporinelike amino acids (MAAs) in phytoplankton, a herbivorous pteropod (Limacina helicina), and its pteropod predator (Clione antarctica) in McMurdo Bay, Antarctica. Mar Biol 139(5):1013-1019 https://doi.org/10.1007/s002270100654
  50. Wägberg Sk, Persson A, Karlson B (1997) Effects of UV-B radiation on synthesis of mycosporine-like amino acid and growth in Heterocapsa triquetra (Dinophyceae). J Photochem Photobiol B: Biol 37(1-2):141-146 https://doi.org/10.1016/S1011-1344(96)07350-2
  51. Xiong F, Kopecky J, Nedbal L (1999) The occurrence of UV-B absorbing mycosporine-like amino acids in freshwater and terrestrial microalgae (Chlorophyta). Aqua Bot 6(1): 37-49
  52. Yentsch CS, Yentsch CM (1982) The attenuation of light by marine phytoplankton with special reference to the absorption of near-UV radiation. In: Calkins J (ed) The role of solar ultraviolet radiation in marine ecosystems. Plenum, New York, pp 691-706
  53. Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C-8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29-45 https://doi.org/10.3354/meps195029

Cited by

  1. Production of mycosporine-like amino acids of in situ phytoplankton community in Kongsfjorden, Svalbard, Arctic vol.114, 2012, https://doi.org/10.1016/j.jphotobiol.2012.03.011
  2. Strategy of photo-protection in phytoplankton assemblages in the Kongsfjorden, Svalbard, Arctic vol.34, pp.1, 2016, https://doi.org/10.1007/s00343-015-4295-3
  3. Photoprotective function of mycosporine-like amino acids in a bipolar diatom (Porosira glacialis): evidence from ultraviolet radiation and stable isotope probing vol.29, pp.4, 2014, https://doi.org/10.1080/0269249X.2014.894945
  4. Seasonal Changes in Mycosporine-Like Amino Acid Production Rate with Respect to Natural Phytoplankton Species Composition vol.13, pp.11, 2015, https://doi.org/10.3390/md13116740
  5. The Variability of CDOM Along the Salinity Gradients of the Seomjin River Estuary During Dry and Wet Seasons vol.22, pp.4, 2016, https://doi.org/10.7837/kosomes.2016.22.4.362