DOI QR코드

DOI QR Code

Inhibitory Effects of PLM-WE1 Formulated from Extract of Phellinus linteus Mycelium against Plant Viruses Infection and Identification of Active Compound

목질진흙버섯(Phellinus linteus) 균사체 추출물 제제 PLM-WE1의 식물 바이러스에 대한 감염억제 효과 및 활성성분의 동정

  • Kwon, Soon-Bae (Gangwondo Agricultural Research and Extension Services) ;
  • Bae, Seon-Hwa (Department of Applied Biology, Kangwon National University) ;
  • Choi, Jang-Kyung (Department of Applied Biology, Kangwon National University) ;
  • Lee, Sang-Yong (Department of Forest Environment Protection, Kangwon National University) ;
  • Kim, Byung-Sup (Department of Plant Life Sciences, Gangneung-Wonju National University) ;
  • Kwon, Yong-Soo (Department of Pharmaceutical Sciences, Kangwon National University)
  • Received : 2010.09.27
  • Accepted : 2010.10.05
  • Published : 2010.12.01

Abstract

Pepper mild mosaic virus(PMMoV) and Cucumber mosaic virus (CMV) are important pathogens in various vegetable crops worldwide. We have found that hot water extract of Phellinus linteus mycelium strongly inhibit PMMoV and CMV infection. Based on these results, the inhibitor named as 'PLM-WE1' formulated from extract of Phellinus linteus mycelium was tested for its inhibitory effects on PMMoV and CMV infection to each local lesion host plant (Nicotiana glutinosa: PMMoV, Chenopodium amaranticolor: CMV). Pretreatment effect of PLM-WE1 against infections of each virus (PMMoV and CMV) to local host plant was measured to be 99.2% to PMMoV and 80.3% to CMV, and its permeability effect was measured to be 45.0% to PMMoV and 41.9% to CMV. Duration of inhibitory activity of PLM-WE1 against PMMoV infection on N. glutinosa was maintained for 3 days at 75% inhibition level and CMV infection on C. amaranticolor maintained for 3 days at 62% inhibition level. Inhibitory effects on systemic host plants of PLM-WE1 were measured to be 75~85% to PMMoV and 75% to CMV. Under electron microscope, PMMoV particles were not denatured or aggregated by mixing PLM-WE1. It is suggested that the mode of action of PLM-WE1 differ from that of inactivation due to the aggregation of viruses. The methanol extract of P. linteus mycelium was sequentially partitioned with haxane, ethyl acetate, BuOH and $H_2O$. The $H_2O$ fraction was showed high activity than the other fractions. The active compound was isolated with a partial acid hydrolysis, fractional precipitation with ethanol. The inhibitory effect of the precipitate isolated from 70% ethanol fraction was 99.1% to PMMoV and 88.0% to CMV. The structure of isolated compound was determined by $^1H$-NMR and $^{13}C$-NMR. This compound was identified as a polysaccharide consisting alpha or beta-glucan.

목질진흙버섯(Phellinus linteus)을 액체 배양한 균사체의 열수 추출물을 이용하여 PMMoV 및 CMV에 대한 감염억제효과를 검정한 결과, PMMoV 및 CMV에 높은 감염억제효과가 발견되었다. 이 결과를 토대로, P. linteus 균사체의 열수추출물을 주성분으로 제제화한 PLM-WE1의 효능 평가를 위하여, PMMoV 및 CMV의 국부감염 기주식물에서 PLM-WE1의 바이러스 접종전 처리효과, 엽이면 처리시의 감염억제효과 및 PLM-WE1의 지속효과 실험을 수행하였다. 그 결과, PLM-WE1(처리농도 10 mg/ml)의 바이러스 접종전 처리시의 감염억제율은 PMMoV 99.2%와 CMV 80.3%이었으며, 본 제제(농도 5 mg/ml)의 엽이면 처리시의 감염억제율은 PMMoV 45.0%와 CMV 41.9%, 약효지속성은 처리 3일 후까지 PMMoV 75%와 CMV 62% 수준으로 감염억제 효과를 보였다. 바이러스 전신감염기 주식물을 이용한 감염억제효과는 PMMoV 75~85%와 CMV 75%이었다. PLM-WE1제제의 바이러스 감염억제 기작을 해석하기 위하여, 정제한 PMMoV에 제제를 혼합하여 전자현미경으로 관찰한 결과, 바이러스 입자의 형태적 변화는 관찰되지 않아, PLM-WE1의 바이러스 감염억제기작은 바이러스입자의 응집(aggregation) 작용과는 다른 기작에 의한 것임이 추정되었다. 목질진흙버섯 균사체로부터 식물바이러스 감염억제 성분의 분리 및 동정을 위하여 유기용매분획, 산 가수분해 및 에탄올 분별침전을 실시하여 고활성 분획을 수득하였다. 이 분획물을 $^1H$-NMR 및 $^{13}C$-NMR을 이용하여 분석한 결과, $\alpha$- 또는 $\beta$-glucan이 결합된 다당류(polysaccharide)로 확인되었다.

Keywords

References

  1. Bald, J. G., Gumpt, D. J. and Heick, J. 1974. Transition from common tobacco mosaic virus to the Nicotiana glauca form. Virology 59: 467-476. https://doi.org/10.1016/0042-6822(74)90456-5
  2. Bawden, F. C. and Freeman, G. G. 1952. The nature and behavior of inhibitor of plant viruses produced by Trichothecium roseum Link. J. Gen Microbiol. 7: 154-168. https://doi.org/10.1099/00221287-7-1-2-154
  3. Burger, W. C. and Stahman, M. A. 1951. The combination of lysine polypeptides with tobacco mosaic virus. J. Biol. Chem. 193: 13-22.
  4. Burkhard Lerch. 1987. On the inhibition of plant virus multiplication by ribavirin. Antiviral Research, 7: 257-270. https://doi.org/10.1016/0166-3542(87)90010-6
  5. Choi, J. H., Ha, T. M., Kim, Y. H. and Rho, Y. D. 1996. Studies on the main factors affecting the mycelial growth of Phellinus linteus. Kor. J. Mycil. 24: 214-222.
  6. Commoner, B. and Mercer, F. L. 1952. The effect of thiouracil on the rate of tobacco mosaic virus biosynthesis. Arch. Biochem. Biophys. 35: 278-288. https://doi.org/10.1016/S0003-9861(52)80007-4
  7. Gooding, G. V. 1975. Inactivation of tobacco mosaic virus in tomato seed with trisodium orthophosphate and sodium hypochlorite. Plant Dis. Reptr. 59: 770-772.
  8. Gupta, B. M. and Price, W. C. 1950. Production of plant virus inhibitors by fungi. Phytopatholohy 40: 642-652.
  9. Gupta, B. M. and Price, W. C. 1952. Mechanisms of inhibition of plant virus infection by fungal growth products. Phytopathology 42: 45-51.
  10. Han, S. B., Lee, C. W., Jeon, Y. J., Hong, N. D., Yoo, I. D., Yang, K. H. and Kim, H. W. 1999. The inhibitory effect of polysaccharide isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacol. 41: 157-164. https://doi.org/10.1016/S0162-3109(98)00063-0
  11. Hirai, T. and Shimomura, T. 1965. Blasticidin S, an effective antibiotic plant virus multiplication. Phytopathology 55: 291-295.
  12. Hiramatsu, A., Kobayashi, N. and Osawa, N. 1986. properties of two inhibitors of plant virus infection from fruiting bodies of Lentinus edodes and from leaves of Yucca recurvifolia Salisb. Agric. Biol. Chem. 51: 897-904.
  13. Ikekawa, T., Nakanishi, M., Uehara, N., Chihara, G. and Fukuoka, F. 1968. Antitumor action of some basidiomycetes, especially Phellinus linteus. Gann. 69: 155-157.
  14. Johnson, J. 1941. Chemical inactivation and the reactivation of plant virus. Phytopathology 31: 679-701.
  15. Jordan, M., Apablaza, G. and Lippi, P. 1978. Obtention of PVX and PVY-free potato plants from in virto shoot-tip cultures serologically checked by ELISA test. Cienc. Invest. Agrar. 5: 207-211.
  16. Kalo, F. and Taniguchi, T. 1987. Properties of a virus inhibitor from spinach leaves and mode of action. Ann. Phytopath. Soc. Japan 53: 159-167. https://doi.org/10.3186/jjphytopath.53.159
  17. Kataoka, M., Noriyuki, D. and Hirai, T. 1969. Effects of antibiotics, inhibitors against protein synthesis on tobacco mosaic virus multiplication and the host metabolism. Ann. Phytopath. Soc. Japan 35: 329-338. https://doi.org/10.3186/jjphytopath.35.329
  18. Kim, Y. S., Hwang, E. I., Kim, K. S., Ryu, M. H. and Yeo, W. H. 2004. Inhibitory of Acinetobacter sp. KTB3 on infection of Tobacco mosaic virus in tobacco plants. Plant Pathol. J. 20:293-296. https://doi.org/10.5423/PPJ.2004.20.4.293
  19. 김미순, 정민영, 김윤성, 장철, 황인천, 류기현, 최장경. 2006. Acinetobacter sp. 배양여과액 분말제제의 식물바이러스에 대한 감염억제 효과 및 작용. 식물병연구 12: 91-98. https://doi.org/10.5423/RPD.2006.12.2.091
  20. Kubo, S. and Tomaru, K. 1973. アルギン酸製のタバコモジャイク病防除果. Ann. Phytopath. Soc. Japan 36: 231. (in Japanese)
  21. Kunkel, L. O. 1936. Heat treatment of yellows and other virus disease of peach. Phytopathplogy. 29: 809-830.
  22. Kwon, S. B. and Sako, N. 1994. A new strain of tobacco mosaic virus infecting rakkyo (Allium chinense G). Ann. Phytopathol. Soc. Jpn. 60: 36-44. https://doi.org/10.3186/jjphytopath.60.36
  23. Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P. and Tumer, N. E. 1990. Engineering resistance to mixed virus infection in a cimmercial potato cultivar : resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Bio/Technology 8: 127-134. https://doi.org/10.1038/nbt0290-127
  24. Leben, C. and Fulton, R. W. 1952. Effect of certain antibiotics on lesion production by two plant viruses. Phytopathology 42:331-335.
  25. 이원호, 김수영, 박영진, 김태웅, 김호경, 성재모. 2004. 목질진흙버섯(Phellinus linteus)의 적합한 균사생장. 한국균학회지 32: 95-100. https://doi.org/10.4489/KJM.2004.32.2.095
  26. Lima, J. A. and Nelson, M. R. 1975. Squash mosaic virus variability; Nonreciprocal cross-protection between strains. Phytopath. 65: 837-840. https://doi.org/10.1094/Phyto-65-837
  27. Maeda, H. 1981. Symposium on plant virus inhibitors of the Japan protection association, Tyoko, Abstracts of papers (November): 5 (in Japanese).
  28. Nagai, Y. 1981. Control of mosaic diseases of tomato and sweet pepper caused by tobacco mosaic virus. Spec Bull Chiba Agric Exp Stn. 9:1.109 (in Japanese with English summary).
  29. Oka, N., Ohki, T., Honda, Y., Nagaoka, K. and Takenaka, K. 2008. Inhibition of Pepper mild mottle virus with Commercial Cellulases. J. Phytopathology 156: 65-67. https://doi.org/10.1111/j.1439-0434.2007.01316.x
  30. Song, K. S., Cho, S. M. and Lee, J. H. 1995. B-lymphocyte stimulating polysaccharide from mushroom Phellinus linteus. Chem. Pham. Bull. 43: 2105-2108. https://doi.org/10.1248/cpb.43.2105
  31. Tagaki, Y. and Ogawa, K. 1978. Inhibitory effect of aqueous extracts from the saw dust-rice bran media grown mycelia of Hymenomycetes on tobacco mosaic virus infection. Ann. Phytopath. Soc. Japan 43: 211-214.
  32. Taniguchi, T. and Goto, T. 1976. Purification and some properties of a virus inhibitor accurring on the leaves of Chenopodium amaranticolor. Ann. Phytopath. Soc. Japan 45: 135-141.
  33. Tomlinson, J. A. and Shepherd, R. J. 1979. Studies in mutagenensis and cross protection of cauliflower mosaic virus. Ann. Appl. Biol. 90: 223-231. https://doi.org/10.1111/j.1744-7348.1978.tb02630.x
  34. Wyatt, S. D. and Shepherd, R. J. 1969. Isolation and characterization of a virus inhibitor from Phytolacca americana. Phytopathplogy 59: 1787-1794.
  35. Yasuda, Y., Noguchi, T., Okada, J. and Aoki, A. 1970. Inhibition by citrinin of oxidase activities in Nicotiana glutinosa leaves infected with tobacco mosaic virus. Ann. Phytopath. Soc. Japan 36: 27-35. https://doi.org/10.3186/jjphytopath.36.27

Cited by

  1. Traditional uses, fermentation, phytochemistry and pharmacology of Phellinus linteus : A review vol.113, 2016, https://doi.org/10.1016/j.fitote.2016.06.009