참고문헌
- Bottalico, A. 1998. Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. J. Plant Pathol. 80:85-103.
- Gale, R. L., Chen, L. F., Hernick, C. A., Takamura, K. and Kistler, H. C. 2002. Population analysis of Fusarium graminearum from wheat fields in eastern China. Phytopathology 92:1315-1322. https://doi.org/10.1094/PHYTO.2002.92.12.1315
- Geiser, D. M., Jiménez-Gasco1, M. M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., Zhang, N., Kuldau, G. A. and O’Donnell, K. 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. of Plant Pathol. 110:473-479. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0
- Karugia, G. W., Suga, H., Gzle, L. R., Nakajima, T., Ueda, A. and Hyakumachi, M. 2009. Population structure of Fusarium asiaticum from two Japanese regions and eastern China. J. Gen. Plant Pathol. 75:110-118. https://doi.org/10.1007/s10327-009-0153-5
- Kim, H. S., Lee, T., Dawlatana, M., Yun, S. H. and Lee, Y. W. 2003. Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Mycol. Res. 107:190-197. https://doi.org/10.1017/S0953756203007317
- Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F. and Lee, Y. W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
- Lee, T., Han, Y. K., Kim, K. H., Yun, S. H. and Lee, Y. W. 2002. Tri13 and Tri7 determine deoxynivalenol and nivalenol producing chemotypes of Gibberella zeae. Appl. Environ. Microbiol. 68:2148-2154. https://doi.org/10.1128/AEM.68.5.2148-2154.2002
- Lee, T., Oh, D. W., Kim, H. S., Lee, J., Kim, Y. H., Yun, S. H. and Lee, Y. W. 2001. Identification of deoxynivalenol and nivalenol producing chemotypes of Gibberella zeae using PCR. Appl. Environ. Microbiol. 67:2966-2972. https://doi.org/10.1128/AEM.67.7.2966-2972.2001
- Lee, Y. W., Jeon, J. J., Kim, H., Jang, I. Y., Kim, H. S., Yun, S. H. and Kim, J. G. 2004. Lineage composition and trichothecenes production of Gibberella zeae population in Korea, p.117-122. In T. Yoshizawa (ed.), New horizons of mycotoxicology for assuring food safety. Japanese Association of Mycotoxicology, Kagawa, Japan.
- Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA.
- Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
- Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H., Lees, N., Parry, A. K. and Joyce, D. W. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol. Mol. Plant Pathol. 53:17-37. https://doi.org/10.1006/pmpp.1998.0170
- O’Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: Condordant evidence from nuclear and mitochondrial gene genealogies. Appl. Biol. Sci. 95:2044-2049.
- O’Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97:7905-7910. https://doi.org/10.1073/pnas.130193297
- O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C. and Aoki, T. 2004. Genealogical concordance between the mating-type locus and seven other nuclear gene supports formal recognition of nine phylogenetically distinct species within the Fusariumgraminearum clade. Fungal Genet. Biol. 41:600-623. https://doi.org/10.1016/j.fgb.2004.03.003
- O’Donnell, K., Ward, T. J., Aberra, D., Kistler, H. C., Aoki, T., Orwing, N., Kimura, M., Bjørnstad, Å. and Klemsdal, S. S. 2008. Multilocus genotyping and molecular phylogentics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet. Biol. 45:1514-1522. https://doi.org/10.1016/j.fgb.2008.09.002
- Proctor, R. H., Hohn, T. M. and McCormick, S. P. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 8:593-601. https://doi.org/10.1094/MPMI-8-0593
- Qu, B., Li, H. P., Zhang, J. B., Xu, Y. B., Huang, T., Wu, A. B., Zhao, C. S., Carter, J., Nicholson, P. and Liao, Y. C. 2008. Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol. 57:15-24.
- Scoz, L. B., Astolfi, P., Reartes, D. S., Schmale III, D. G., Moraes, M. G. and Del Ponte, E. M. 2009. Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from southern Brazil. Plant Pathology 58:344-351. https://doi.org/10.1111/j.1365-3059.2008.01949.x
- Suga, H., Karugia, G. W., Ward, T., Gale, L. R., Tomimura, K., Nakajima, T., Miyasaka, A., Koizumi, S., Kageyama, K. and Hyakumachi, M. 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159-166. https://doi.org/10.1094/PHYTO-98-2-0159
- Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Tóth, B., Varga, J. and O’Donnell, K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 44:1191-1204. https://doi.org/10.1016/j.fgb.2007.03.001
- Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
- Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Ueda, A., Nishimoto, H., Kato, N., Hirano, T. and Fukaya, M. 2007. Lineages and trichothecene mycotoxin types of fusarium head blight pathogens of wheat and barley in Todai district. Res. Bull. Aichi. Agric. Res. Ctr. 39:17-23.
- Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. and O’Donnell, K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA 99:9278-9283. https://doi.org/10.1073/pnas.142307199
- Ward, T. J., Clear, R. M., Rooney, A. P., O’Donnell, K. Gaba, D., Patick, S., Starkey, D. E., Gilbert, J., Geiser, D. and Nowicki, T. W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45:473-484. https://doi.org/10.1016/j.fgb.2007.10.003
- Yang, L., Lee, T., Yang, X., Yu, D. and Waalwijk, C. 2008. Fusarium population on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology 98:719-727. https://doi.org/10.1094/PHYTO-98-6-0719
- Yli-Mattila, T., Gagkaeva, T., Ward, T. J., Aoki, T., Kistler, H. C. and O’Donnell, K. 2009. A novel Asian clade within Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101:841-852. https://doi.org/10.3852/08-217
- Zhang, Z., Zhang, H., Lee, T., Chen, W. Q., Arens, P., Xu, J., Xu, J. S., Yang, L. J., Yu, D. Z., Waalwijk, C. and Feng, J. 2010. Geographic substructure of Fusarium asiaticum isolates collected from barly in China. Eur. J. Plant Pathol. 127:239-248. https://doi.org/10.1007/s10658-010-9588-y
피인용 문헌
- Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum vol.29, pp.1, 2013, https://doi.org/10.5423/PPJ.OA.07.2012.0113
- Characterization of Fusarium Strains Recovered From Wheat With Symptoms of Head Blight in Kentucky vol.99, pp.11, 2015, https://doi.org/10.1094/PDIS-06-14-0610-RE
- Occurrence of Toxigenic Fusarium vorosii among Small Grain Cereals in Korea vol.32, pp.5, 2016, https://doi.org/10.5423/PPJ.OA.05.2016.0123
- Occurrence of Fungi and Fusarium Mycotoxins in the Rice Samples from Rice Processing Complexes vol.20, pp.4, 2014, https://doi.org/10.5423/RPD.2014.20.4.289
- Molecular Characterization of Fusarium Graminearum Virus 2 Isolated from Fusarium graminearum Strain 98-8-60 vol.27, pp.3, 2011, https://doi.org/10.5423/PPJ.2011.27.3.285
- Composition and toxigenic potential of theFusarium graminearumspecies complex from maize ears, stalks and stubble in Brazil vol.65, pp.7, 2016, https://doi.org/10.1111/ppa.12497
- Trichothecene Genotype Composition of Fusarium graminearum Not Differentiated Among Isolates from Maize Stubble, Maize Ears, Wheat Spikes, and the Atmosphere in New York vol.105, pp.5, 2015, https://doi.org/10.1094/PHYTO-10-14-0266-R
- Estrogenic Compounds Compatible with a Conditional Gene Expression System for the Phytopathogenic Fungus Fusarium graminearum vol.27, pp.4, 2011, https://doi.org/10.5423/PPJ.2011.27.4.349
- Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests vol.105, pp.4, 2015, https://doi.org/10.1094/PHYTO-07-14-0208-R
- Biogeography ofFusarium graminearumspecies complex and chemotypes: a review vol.32, pp.4, 2015, https://doi.org/10.1080/19440049.2014.984244
- Population Structure and Genetic Diversity of the Fusarium graminearum Species Complex vol.3, pp.12, 2011, https://doi.org/10.3390/toxins3081020