DOI QR코드

DOI QR Code

Trimmed LAD Estimators for Multidimensional Contingency Tables

분할표 분석을 위한 절사 LAD 추정량과 최적 절사율 결정

  • Choi, Hyun-Jip (Department of Information Statistics, Kyonggi University)
  • 최현집 (경기대학교 응용정보통계학과)
  • Received : 20101000
  • Accepted : 20101100
  • Published : 2010.12.31

Abstract

This study proposes a trimmed LAD(least absolute deviation) estimators for multi-dimensional contingency tables and suggests an algorithm to estimate it. In addition, a method to determine the trimming quantity of the estimators is suggested. A Monte Carlo study shows that the propose method yields a better trimming rate and coverage rate than the previously suggest method based on the determinant of the covariance matrix.

다차원 분할표를 구성하는 범주형 변수들의 연관관계를 식별하기 위하여 널리 이용되는 로그선형모형을 위한 절사 LAD(least absolute deviations) 추정방법을 제안하였다. 제안된 방법은 가중 LAD 추정을 반복하여 계산이 수행되므로 분할표 분석을 위해 적용할 수 있는 여러 연관성 모형(association models)에 직접 적용할 수 있다. 또한 붓스트랩을 이용한 최적절사율을 결정하는 방법이 갖는 공분산행렬을 과소추정하는 문제를 해결하기위한 절사율 결정 방법을 제안하였다. 모의실험을 통해 제안된 방법이 붓스트랩 방법에 비하여 항상 우수한 절사율을 보인다는 것을 설명하였으며, 제안된 방법들의 실제 자료분석 결과를 제시하였다.

Keywords

References

  1. 이동희, 정병철 (2010). 붓스트랩을 활용한 최적 절사공간중위수 추정량, <응용통계연구>, 23, 375–382. https://doi.org/10.5351/KJAS.2010.23.2.375
  2. 최현집 (2003). 범주형 자료 분석을 위한 LAD 추정량, <응용통계연구>, 16, 55–69. https://doi.org/10.5351/KJAS.2003.16.1.055
  3. Barrodale, I. and Roberts, F. D. K. (1973). An improved algorithm for discrete $l_1 $linear approximation, SIAM Journal of Numerical Analysis, 10, 839–848.
  4. Birkes, D. and Dodge, Y. (1993). Alternative Methods of Regression, John Wiley & Sons, Inc.
  5. Choi, H. J. (2008). Estimating LAD regression coefficients with best subset points, Communications in Statistics, Simulation and Computation, 37, 1799–1809.
  6. Godalize, A. (1991). Best approximations to random variables based on trimming procedures, Journal of Approximation Theory, 64, 162–180.
  7. Grizzle, J. E., Stamer, F. and Koch, G. G. (1969). Analysis of categorical data by linear models, Biometrics, 25, 489–504.
  8. Hadi, A. S. and Luceno, A. (1997). Maximum trimmed likelihood estimators: A unified approach, example, and algorithms, Computational Statistics and Data Analysis, 25, 251–272.
  9. Koenker, R.W. and d'Orey (1987). Computing regression quantiles, Journal of the Royal Statistical Society, Series C(Applied Statistics), 36, 383–393.
  10. Mosteller, F. and Parunak, A. (1985). Identifying extreme cells in a sizable contingency table: Probabilistic and exploratory approaches, In Exploring Data Tables, Trends and Shape, edited by Hoaglin, D. C., Mosteller, F. and Tukey, J. W., John Wiley & Sons, New York, 189–224.
  11. Rousseeuw, P. J. and Driessen, K. (2006). Computing LTS regression for large data sets, Data Mining and Knowledge Discovery, 12, 29–45.
  12. Schlossmacher, E. J. (1973). An iterative technique for absolute deviations curve fitting, Journal of the American Statistical Association, 68, 857–859.
  13. Shane, K. V. and Simonoff, J. S. (2001). A robust approach to categorical data analysis, Jounal of Computational and Graphical Statistics, 10, 135–157.
  14. Vandev, D. L. (1995). Computing of trimmed $L_1$ median, In Multidimensional Analysis in Behavioral Sciences, Philosopic to Technical, 152–157.