Preparation of PEG Microparticles Containing Coriander Essential Oil Using Supercritical PGSS Process

초임계 PGSS 공정을 이용한 Coriander 정유 함유 PEG 미세입자 제조

  • Choi, Jin-Ah (Department of Chemical Engineering, The University of Suwon) ;
  • Lim, Gio-Bin (Department of Chemical Engineering, The University of Suwon) ;
  • Ryu, Jong-Hoon (Department of Chemical Engineering, The University of Suwon)
  • Received : 2010.07.14
  • Accepted : 2010.08.24
  • Published : 2010.08.31

Abstract

In the present study, biocompatible poly (ethylene glycol) (PEG) microparticles containing coriander essential oil were prepared using a supercritical particles from gas saturated solution (PGSS) process to improve the stability of the coriander oil. The effects of various process parameters such as temperature, pressure, and nozzle diameter on the morphology and entrapment efficiency of coriander oil loaded PEG microparticles were then investigated. A positive influence on the formation of spherical microparticles was observed with increasing temperature and decreasing pressure. Furthermore, somewhat more porous microparticles were produced with an increase in pressure. At a given temperature, the highest entrapment efficiency of coriander essential oil in PEG microparticles was observed under the lowest experimental pressure condition.

본 연구에서는 coriander 정유의 안정성 향상을 위해 초임계 PGSS 공정을 이용하여 coriander 정유가 봉입된 PEG 미세입자를 제조하였으며 공정 온도와 압력, 노즐 크기가 미세입자의 크기, 형태 및 정유의 봉입률에 미치는 영향에 대하여 조사하였다. $100\;{\mu}m$ 노즐을 사용하여 얻어진 미세입자의 형상을 분석한 결과 $1-10\;{\mu}m$ 크기의 구형 입자 형태를 나타내었으나 노즐의 크기가 증가한 경우에는 덩어리진 입자가 얻어짐을 확인하였다. 온도, 압력 변화에 따라 얻어진 미세입자의 경우 일정 압력 조건에서 공정 온도가 높아짐에 따라, 일정 온도 조건에서 공정 압력이 낮아짐에 따라 구형입자 비율이 증가함을 보였으며, 일정 온도 조건에서는 공정 압력이 높아짐에 따라 더 많은 기공을 가지는 입자가 생성됨을 확인하였다. 제조된 PEG 미세입자 내 coriander 정유의 봉입률은 모든 온도 조건에서 가장 낮은 압력인 75 bar일 때 가장 높은 값을 보였다.

Keywords

References

  1. Rodrigues, M., N. Peirico, H. Matos, E. G. de Azevedo, M. R. Lobato, and A. J. Almeida (2004) Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems. J. Supercrit. Fluids 29: 175-184. https://doi.org/10.1016/S0896-8446(03)00034-2
  2. Stefano, S., N. Elvassore, A. Bertucco and P. Caliceti (2009) Production of solid lipid submicron particles for protein delivery using a novel supercritical gasassisted melting atomization process. J. Pharm. Sci. 98: 640-650. https://doi.org/10.1002/jps.21434
  3. Jung, J. H., I. I. Jung, H. J. Joo, J. R. Shin, G. B. Lim and J. H. Ryu (2008) Preparation of biodegradable polymer microparticles containing 5-FU using supercritical carbon dioxide. KSBB J. 23: 452-459.
  4. York, P. (1999) Strategies for particle design using supercritical fluids. Pharm. Sci. Technol. Today 2: 430-440. https://doi.org/10.1016/S1461-5347(99)00209-6
  5. Kim, D. H., H. J. Park, S. H. Kang, S. W. Jun, M. S. Kim, S. B. Lee, J. S. Park, and S. J. Hwang (2005) Preparation and characterization of lysozyme nanoparticles using solution enhanced dispersion by supercritical fluid (SEDS) Process. J. Kor. Pharma. Sci. 35: 89-94.
  6. Lee, Y. W. (2003) Design of particles using supercritical fluids. HWAHAK KONGHAK 41: 679-688.
  7. Tandya, A., F. Dehghani, and N. R. Foster (2006) Micronization of cyclosporine using dense gas techniques. J. Supercrit. Fluids 37: 272-278. https://doi.org/10.1016/j.supflu.2005.10.004
  8. Nalawade, S., P. F. Picchion, and L. P. B. M. Janssen (2007) Batch production of micron size particles from poly(ethylene glycol) using supercritical $CO_{2}$ as a processing solvent. Chem. Eng. Sci. 62: 1712-1720. https://doi.org/10.1016/j.ces.2006.04.034
  9. Hao, J., M. J. Whitaker, G. Serhatkulu, K. M. Shakesheff, and S. M. Howdle (2005) Supercritical fluid assisted melting of poly(ethylene glycol): a new solvent free route to microparticles. J. Mater. Chem. 15: 1148-1153. https://doi.org/10.1039/b411187g
  10. Byrappa, K., S. Ohara, and T. Adschiri (2008) Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications. Adv. Drug Deliv. Rev. 60: 299-327. https://doi.org/10.1016/j.addr.2007.09.001
  11. Song, E. S., H. S. Jung, H. H. Lee, J. D. Kim, H. Y. Kim, and Y. W. Lee (2006) The Production of protein-loaded poly(lactide-co-glycolide) microparticles using supercritical carbon dioxide. Clean Technology 12: 53-61.
  12. Bakkali, F., S. Averbeck, D. Averbeck, and M. Idaomar (2008) Biological effects of essential oils - A review. Food Chem. Toxicol. 46: 466-475.
  13. Shigeharu, I., T. Toshio, and Y. Hidetyo (2001) Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 47: 565-573. https://doi.org/10.1093/jac/47.5.565
  14. Shittu, L. A. J., M. A. Bankole, T. Ahmed, M. N. Bankole, R. K. Shittu, C. L. Saalu, and O.A. Ashiru (2007) Antibacterial and antifungal activities of essential oils of crude extracts of sesame radiatum against some common pathogenic micro-organisms. IJPT 6: 165-170.
  15. Hong, E. J., K. J. Na, I. G. Choi, K. C. Choi, and E. B. Jeung (2004) Antibacterial and antifungal effects of essential oils from coniferous trees. Biol. Pharm. Bull. 27: 863-866. https://doi.org/10.1248/bpb.27.863
  16. Lee, S. O., G. J. Choi, K. S. Jang, H. K. Lim, K. Y. Cho, and J. C. Kim (2007) Antifungal activity of five plant essential oils as fumigant against postharvest and soilborne plant pathogenic fungi. Plant Pathol. J. 23: 97-102. https://doi.org/10.5423/PPJ.2007.23.2.097
  17. Svoboda, K. P., and J. B. Hampson (1999) Bioactivity of essential oils of selected temperate aromatic plants: antibacterial, antioxidant, antiinflammatory and other related pharmacological activities. In: Special Chemicals for the 21st Century. ADEME/IENICA International Seminar. September 16-17. Paris, France.
  18. Prabuseenivasan, S., M. Jayakumar, and S. Ignacimuthu (2006) In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine 30: 6-39.
  19. Randrianarivelo, R., S. Sarter, E. Odoux, P. Brat, M. Lebrun, B. Romestand, C. Menut, H. S. Andrianoelisoa, M. Raherimandimby, and P. Danthu (2009) Composition and antimicrobial activity of essential oils of Cinnamosma fragrans. Food Chem. 114: 680-684. https://doi.org/10.1016/j.foodchem.2008.10.007
  20. Ebrahimi, S. N., J. Hadian, M. H. Mirjalili, A. Sonboli, and M. Yousefzadi (2008) Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food Chem. 110: 927-931. https://doi.org/10.1016/j.foodchem.2008.02.083
  21. Emamghoreishi, M., M. Khasaki, and M. F. Aazam (2005) Coriandrum sativum: evaluation of its anxiolytic effect in the elevated plus-maze. J. Ethnopharmacol. 96: 365-370. https://doi.org/10.1016/j.jep.2004.06.022
  22. Msaada, K., K. Hosni, M. B. Taarit, T. Chaged, M. E. Kchouk, and B. Marzouk (2007) Changes on essential oil composition of coriander (Coriandrum sativum L.) fruits during three stages of maturity. Food Chem. 102: 1131-1134. https://doi.org/10.1016/j.foodchem.2006.06.046
  23. Wangensteen, H., A. B. Samuelsen, and K. E. Malterud (2004) Antioxidant activity in extracts from coriander. Food Chem. 88: 293-297. https://doi.org/10.1016/j.foodchem.2004.01.047
  24. Chithra, V. and S. Leelamma (2000) Coriandrum sativum - effect on lipid metabolism in 1,2-dimethyl hydrazine induced colon cancer. J. Ethnopharmacol. 71: 457-463. https://doi.org/10.1016/S0378-8741(00)00182-3
  25. Gallagher, A. M., P. R. Flatt, G. Duffy, and Y. H. A. Abdel-Wahab (2003) The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutr. Res. 23: 413-424. https://doi.org/10.1016/S0271-5317(02)00533-X
  26. Park, K. K. and D. W. Pack (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10: 146-161. https://doi.org/10.3390/10010146
  27. Jamie, L. O. (2006) PEG-based degradable networks for drug delivery applications. Ph. D. Thesis. Drexel University, Philadelphia. USA.
  28. Kim, S. H., and S. H. Kim (2007) Biofunctional biodegradable polymers. Polym. Sci. Technol. 18: 450-457.
  29. Fuertges, F. and A. Abuchowski (2009) The clinical efficacy of poly(ethylene glycol)-modified proteins. J. Control. Release 11: 139-148.
  30. Yoo, M. K., J. H. Park, and S. Y. Jeon (2008) Magnetic resonance imaging nano-agents for cancer imaging. Polym. Sci. Technol. 19: 116-124.
  31. Weidner, E., V. Wiesmet, Z. Knez, and M. Serget (1997) Phase equilibrium (solid-liquid-gas) in polyethyleneglycolcarbon dioxide systems. J. Supercrit. Fluids 10: 139-147. https://doi.org/10.1016/S0896-8446(97)00016-8
  32. Goodner, K. L. (2008) Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragrance compounds. LWT - Food Sci. Technol. 41: 951-958. https://doi.org/10.1016/j.lwt.2007.07.007
  33. Choi, H. S. and M, Sawamura (2001) Volatile flavor components of ripe and overripe ki-mikans (Citrus flaviculpus Hort. ex Tanaka) in comparison with hyuganatsu (Citrus tamurana Hort. ex Tanaka). Biosci. Biotechnol. Biochem. 65: 48-55. https://doi.org/10.1271/bbb.65.48
  34. Seo, H. Y., K. M. No, S. L. Shim, K. Y. Ryu, K. J. Han, R. Gyawali, and K. S. Kim (2006) Analysis of enantiomeric composition of chiral flavor components from dried ginger (Zingiber officinale Roscoe). J. Korean Soc. Food Sci. Nutr. 35: 874-880. https://doi.org/10.3746/jkfn.2006.35.7.874
  35. Menichini, F., F. Conforti, D. Rogano, C. Formisano, F. Piozzi, and F. Senatore (2009) Phytochemical composition, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chem. 115: 679-686. https://doi.org/10.1016/j.foodchem.2008.12.067
  36. Babushok, V. I. and L. G (2009) Zenkevich, Retention indices for most frequently reported essential oil compounds in GC. Chromatographia 69: 257-269. https://doi.org/10.1365/s10337-008-0872-3
  37. Wendt, T., G. Brandin, E. Weidner, and M. Petermann (2007) PGSS - The innovative production of fluid-filled microcapsules for the food industry. Proceedings of European Congress of Chemical Engineering (ECCE-6). September 16-20. Copenhagen, Denmark.
  38. Illes, V., H. G. Daood, S. Perneczki, L. Szokonya, and M. Then (2000) Extraction of coriander seed oil by $CO_{2}$ and propane at super- and subcritical conditions. J. Supercrit. Fluids 17: 177-186. https://doi.org/10.1016/S0896-8446(99)00049-2
  39. Heikki, K. and K. Kerrola (1992) Application of liquid carbon dioxide to the extraction of essential oil of coriander (Coriandrum sativum L.) fruits. Z Lebensm Unters Forsch 195: 545-549. https://doi.org/10.1007/BF01204560