Bioethanol Production from Hydrolysate of Seaweed Sargassum sagamianum

모자반 가수분해물을 이용한 바이오 에탄올 생산

  • Yeon, Ji-Hyeon (Department of Biotechnology, Chungju National University) ;
  • Seo, Hyeon-Beom (Department of Biotechnology, Chungju National University) ;
  • Oh, Sung-Ho (Division of Biomaterials Engineering, Kangwon National University) ;
  • Choi, Won-Seok (Department of Food Science and Technology, Chungju National University) ;
  • Kang, Do-Hyung (Korea Ocean Research & Development Institute) ;
  • Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
  • 연지현 (충주대학교 바이오산업학과) ;
  • 서현범 (충주대학교 바이오산업학과) ;
  • 오성호 (강원대학교 생물소재공학) ;
  • 최원석 (충주대학교 식품공학과) ;
  • 강도형 (한국해양연구원) ;
  • 이현용 (강원대학교 생물소재공학) ;
  • 정경환 (충주대학교 바이오산업학과)
  • Received : 2010.04.27
  • Accepted : 2010.06.19
  • Published : 2010.06.30

Abstract

We investigated the feasibility of bioethanol production from hydrolysate of brown seaweed Sargassum sagamianum. Prior to bioethanol production using yeasts, six yeast strains were compared and the best ones in terms of the ethanol production levels were selected. Pichia stipitis ATCC 7126, Pichia stipitis ATCC 58784, and Pichia stipitis ATCC 58376 were superior to others in terms of ethanol production. These yeast strains were used for producing bioethanol by the shaking bottle culture and the fermentor culture. Out of approximately 30 g/L reducing sugar, about 3~6 g/L and 4~7 g/L bioethanol were produced in the bottle culture and the fermentor one, respectively. Furthermore, it was observed that around 12~28 g-bioethanol was produced from 1 kilogram of Sargassum sagamianum. Compared with those previously published, these data were almost three to eight times higher in value.

Keywords

References

  1. Sargassaceae. http://www.encyber.com.
  2. Jensen, A. (1993) Present and future needs for algae and algal products. Hydrobiologia 260-261: 15-23. https://doi.org/10.1007/BF00048998
  3. Zubia, M., C. Payri, and E. Deslandes (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J. Appl. Phycol. 20: 1033-1043. https://doi.org/10.1007/s10811-007-9303-3
  4. Aquatic biomass: Sustainable bio-energy from algae? http://www.oeko.de.
  5. Abdel-Fattah, A. F., M. M. -E. Hussein, and H. M. Salem (1973) Sargassan: A sulphated heteropolysaccharide from Sargassum linifolium. Phytochemistry. 12: 1995-1998. https://doi.org/10.1016/S0031-9422(00)91522-X
  6. Sinha, S., A. Astani, T. Ghosh, P. Schnitzler, and B. Ray (2010) Polysaccharides from Sargassum tenerrimum: Structural features, chemical modification and anti-viral activity. Phytochemistry. 71: 235-242. https://doi.org/10.1016/j.phytochem.2009.10.014
  7. Hiroe, M. and N. Kazutosi (1982) Sugar constituents of sulfated polysccharides from the fronds of Sargassum ringgoldianum. B. Jpn. Soc. Sci. Fish. 48: 981-989. https://doi.org/10.2331/suisan.48.981
  8. Zhou, J., N. Hu, Y. l. Wu, Y. Pan, and C. R. Sun (2008) Preliminary studies on the chemical characterization and antioxidant properties of acidic polysaccharides from Sargassum fusiforme. J. Zhejiang Univ. Sci. B. 9: 721-727. https://doi.org/10.1631/jzus.B0820025
  9. Zhu, W., L. C. M. Chiu, V. E. C. Ooi, P. K. S. Chan, and P. O. Ang Jr. (2006) Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1. Phytochemistry 13: 695-701.
  10. Dias, P. F., J. M. Siqueira Jr., M. Maraschin, A. G. Ferreira, A. G. Ferreira, A. R. Gagliardi, and R. M. Ribeiro-do-Valle (2008) A Polysaccharide isolated from the brown seaweed Sargassum stenophyllum exerts antivasculogenic effects evidenced by modified morphogenesis. Microvasc. Res. 75: 34-44. https://doi.org/10.1016/j.mvr.2007.05.004
  11. Duarte, M. E. R., M. A. Cardoso, M. D. Noseda, and A. S. Cerezo (2001) Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr. Res. 333: 281-293. https://doi.org/10.1016/S0008-6215(01)00149-5
  12. Lee, S. M., I. S. Choi, S. K. Kim, and J. H. Lee (2009) Production of Bioethanol from brown algae by enzyme hydrolysis. KSBB J. 24: 483-488.
  13. Lee, S. M., J. H. Kim, H. Y. Cho, H. Joo, and J. H. Lee (2009) Production of bioethanol from brown algae by physicochemical hydrolysis. J. Korean Ind. Eng. Chem. 20: 517-521
  14. Horn, S. J., I. M. Aasen, and K. Ostgaard (2000) Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 25: 249-254. https://doi.org/10.1038/sj.jim.7000065
  15. Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch (2008) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993.
  16. Chaplin, M. F. and J. F. Kennedy (1986) Carbohydrate analysis; A practical approach, p. 3. IRL press, Oxford, UK.
  17. Lee, S. -E., H. -B. Seo, M. C. Kwon, H. -Y. Lee, and K. -H. Jung (2010) Operational strategy for increasing ethanol production in repeated fed-batch ethanol fermentation using Saccharomyces cerevisiae. KSBB J. 25: 187-192.
  18. Lee, S. -E., J. -H. Yeon, Y. C. Seo, D. H. Kang, H. -Y. Lee, and K. -H. Jung (2010) Optimal strategy for ethanol production in repeated fed-batch operation using flocculent Sacchromyces cerevisiae. KSBB J. 25: 179-186.