Trends in Protein Engineering for Gene Targeting: Homing Endonucleases and Zinc Finger Nucleases

유전자 표적화를 위한 단백질공학 연구동향: Homing Endonucleases and Zinc Finger Nucleases

  • Cheong, Dea-Eun (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Kim, Geun-Joong (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
  • Received : 2010.04.21
  • Accepted : 2010.06.19
  • Published : 2010.06.30

Abstract

Monogenic diseases are resulted from modifications in a single gene of human cells. Because their treatment with pharmacological medicine have a temporary effect, continuous nursing care and retreatment are required. Gene therapy, gene targeting and induced pluripotent stem cell (iPSC) are considered permanent treatment methods of them. In gene therapy, however, retroviral vectors that have potential toxicity caused by random insertion of harmful virus are used as vehicles for transferring genetic materials. On the other hand, gene targeting could replace and remove the modified gene though homologous recombination (HR) induced by site-specific endonucleases. This short review provides a brief overview on the recently tailored endonucleses with high selectivity for HR.

Monogenic disease의 치료를 위한 하나의 전략으로 viral vector를 이용한 gene therapy에 비해 독성이 적은 gene targeting 기술을 이용하기 위한 연구가 진행되고 있다. 이러한 연구의 주된 관점은 자연적인 HR의 낮은 효율을 개선하기 위한 DSB 유도 방법으로, 선택성을 높일 수 있는 긴 염기서열의 인식이 가능한 artificial endonuclease의 개발이다. 본 글에서는 이러한 artificial endonuclease 중, 가장 많이 연구 되고 있는 homing endonuclease와 zinc finger nuclease를 간략히 소개하였다. 전자와 후자 모두, 인식 서열에 대한 일정 수준의 tolerance (인식 서열 일부가 특이적이지 않아 다른 염기로 구성된 경우)가 존재하여, 일정한 비율로 다른 target을 절단할 수 있는 가능성이 존재한다. 이러한 점은, meganucleases를 치료 목적으로 이용할 때 세포 독성을 나타내는 근본원인 중 하나이다. 두 종 모두 이러한 특성을 가짐에도 불구하고, 완전한 비자연적인 후자보다는 전자의 경우가 보다 효과적이며 낮은 세포독성을 보이는 것으로 보고되고 있다. 물론 실험 조건이나 적용되는 세포 종류, 인위적인 단백질의 발현 정도에 따라 세포 독성유무 또는 정도에 차이가 나타남이 확인되고 있다. 이러한 사실들에 근거할 때, gene targeting을 유도하기 위한 artificial endonuclease의 서열 특이성을 증대시키는 것이 가장 중요하나, 그 외 여러 인자들에 대한 복합적인 연구 역시 필요함을 보여준다. 현재까지 실제 치료제로 쓰인 예는 없지만, 시험관내에서 보이는 결과와 모델 개체에서 이루어진 표적화정도, 관련된 단백질 치료제들이 지닌 잠재성을 비교할 때 매우 큰 가능성을 지니고 있음은 충분히 확인할 수 있다.

Keywords

References

  1. Amberger, J., C. A. Bocchini, A. F. Scott, and A. Hamosh (2009) McKusick's Online Mendelian inheritance in man (OMIM(R)). Nucl. Acids Res. 37: D793-796. https://doi.org/10.1093/nar/gkn665
  2. O'Connor, T. P. and R. G. Crystal (2006) Genetic medicines: treatment strategies for hereditary disorders. Nat. Rev. Genet. 7: 261-276. https://doi.org/10.1038/nrg1829
  3. Capecchi, M. R. (1989) The new mouse genetics: Altering the genome by gene targeting. Trends Genet. 5: 70-76. https://doi.org/10.1016/0168-9525(89)90029-2
  4. Aiuti, A., S. Slavin, M. Aker, F. Ficara, S. Deola, A. Mortellaro, S. Morecki, G. Andolfi, A. Tabucchi, F. Carlucci, E. Marinello, F. Cattaneo, S. Vai, P. Servida, R. Miniero, M. G. Roncarolo, and C. Bordignon (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 296: 2410-2413. https://doi.org/10.1126/science.1070104
  5. Gaspar, H. B., K. L. Parsley, S. Howe, D. King, K. C. Gilmour, J. Sinclair, G. Brouns, M. Schmidt, C. Von Kalle, T. Barington, M. A. Jakobsen, H. O. Christensen, A. Al Ghonaium, H. N. White, J. L. Smith, R. J. Levinsky, R. R. Ali, C. Kinnon, and A. J. Thrasher (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet. 364: 2181-2187. https://doi.org/10.1016/S0140-6736(04)17590-9
  6. Abbott, A. (2006) Questions linger about unexplained gene-therapy trial death. Nat. Med. 12: 597.
  7. Capecchi, M. R. (2001) Generating mice with targeted mutations. Nat. Med. 7: 1086-1090. https://doi.org/10.1038/nm1001-1086
  8. Smithies, O. (2001) Forty years with homologous recombination. Nat. Med. 7: 1083-1086. https://doi.org/10.1038/nm1001-1083
  9. Sedivy, J. M. and A. Dutriaux (1999) Gene targeting and somatic cell genetics: a rebirth or a coming of age? Trends Genet. 15: 88-90. https://doi.org/10.1016/S0168-9525(98)01689-8
  10. Friedhoff, P. and A. Pingoud (2007) Engineering Sitespecific Endonucleases. pp. 111-123 In: Arndt, K. M., and Kristian M. Müller (eds). Protein Engineering Protocols. Humana Press, Totowa, New Jersey.
  11. Albert Cotton F., E. E. H., Jr., and Margaret J. Legg (1979) Staphylococcal nuclease: Proposed mechanism of action based on structure of enzyme-thymidine 3′, 5′-bisphosphate-calcium ion complex at 1.5-A resolution. Proc. Natl. Acad. Sci. USA. 76: 2551-2555. https://doi.org/10.1073/pnas.76.6.2551
  12. Pei, D. and P. G. Schultz (1990) Site-specific cleavage of duplex DNA with a lambda. repressor-staphylococcal nuclease hybrid. J. Am. Chem. Soc. 112: 4579-4580. https://doi.org/10.1021/ja00167a085
  13. Chan, S.-h., Y. Bao, E. Ciszak, S. Laget, and S.-y. Xu (2007) Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities. Nucl. Acids Res. 35: 6238-6248. https://doi.org/10.1093/nar/gkm665
  14. Jurenaite-Urbanaviciene, S., J. Serksnaite, E. Kriukiene, J. Giedriene, C. Venclovas, and A. Lubys (2007) Generation of DNA cleavage specificities of type II restriction endonucleases by reassortment of target recognition domains. Proceedings of the National Academy of Sciences. 104: 10358-10363. https://doi.org/10.1073/pnas.0610365104
  15. Katada, H. and M. Komiyama (2009) Artificial restriction DNA cutters as new tools for gene manipulation. Chembiochem. 10: 1279-1288. https://doi.org/10.1002/cbic.200900040
  16. Mimitou, E. P. and L. S. Symington (2009) Nucleases and helicases take center stage in homologous recombination. Trends Biochem. Sci. 34: 264-272. https://doi.org/10.1016/j.tibs.2009.01.010
  17. Coates, C. J., J. M. Kaminski, J. B. Summers, D. J. Segal, A. D. Miller, and A. F. Kolb (2005) Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends Biotechnol. 23: 407-419. https://doi.org/10.1016/j.tibtech.2005.06.009
  18. Choulika, A., A. Perrin, B. Dujon, and J. Nicolas (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 1968-1973. https://doi.org/10.1128/MCB.15.4.1968
  19. Stoddard, B. L. (2005) Homing endonuclease structure and function. Q. Rev. Biophys. 38: 49-95.
  20. Lee, G. S., M. B. Neiditch, S. S. Salus, and D. B. Roth (2004) RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAGNicking initiates homologous recombination. Cell. 117: 171-184. https://doi.org/10.1016/S0092-8674(04)00301-0
  21. McConnell Smith, A., R. Takeuchi, S. Pellenz, L. Davis, N. Maizels, R. J. Monnat, and B. L. Stoddard (2009) Generation of a nicking enzyme that stimulates sitespecific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proceedings of the National Academy of Sciences. 106: 5099-5104. https://doi.org/10.1073/pnas.0810588106
  22. Flick, K. E., M. S. Jurica, R. J. Monnat, Jr., and B. L. Stoddard (1998) DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature. 394: 96-101. https://doi.org/10.1038/27952
  23. Eklund, J. L., U. Y. Ulge, J. Eastberg, and R. J. Monnat, Jr (2007) Altered target site specificity variants of the I-PpoI His-Cys box homing endonuclease. Nucl. Acids Res. 35: 5839-5850. https://doi.org/10.1093/nar/gkm624
  24. Redondo, P., J. Prieto, I. G. Munoz, A. Alibes, F. Stricher, L. Serrano, J.-P. Cabaniols, F. Daboussi, S. Arnould, C. Perez, P. Duchateau, F. Paques, F. J. Blanco, and G. Montoya (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature. 456: 107-111. https://doi.org/10.1038/nature07343
  25. Chica, R. A., N. Doucet, and J. N. Pelletier (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol. 16: 378-384. https://doi.org/10.1016/j.copbio.2005.06.004
  26. Ashworth, J., J. J. Havranek, C. M. Duarte, D. Sussman, R. J. Monnat, B. L. Stoddard, and D. Baker (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature. 441: 656-659. https://doi.org/10.1038/nature04818
  27. Desjarlais, J. R. and J. M. Berg (1992) Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc. Natl. Acad. Sci. USA. 89: 7345-7349. https://doi.org/10.1073/pnas.89.16.7345
  28. Greisman, H. A. and C. O. Pabo (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science. 275: 657-661. https://doi.org/10.1126/science.275.5300.657
  29. Urnov, F. D., J. C. Miller, Y.-L. Lee, C. M. Beausejour, J. M. Rock, S. Augustus, A. C. Jamieson, M. H. Porteus, P. D. Gregory, and M. C. Holmes (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 435: 646-651. https://doi.org/10.1038/nature03556
  30. Isalan, M., A. Klug, and Y. Choo (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotech. 19: 656-660. https://doi.org/10.1038/90264
  31. Wright, D. A., S. Thibodeau-Beganny, J. D. Sander, R. J. Winfrey, A. S. Hirsh, M. Eichtinger, F. Fu, M. H. Porteus, D. Dobbs, D. F. Voytas, and J. K. Joung (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat. Protocols. 1: 1637-1652. https://doi.org/10.1038/nprot.2006.259
  32. Maeder, M. L., S. Thibodeau-Beganny, A. Osiak, D. A. Wright, R. M. Anthony, M. Eichtinger, T. Jiang, J. E. Foley, R. J. Winfrey, J. A. Townsend, E. Unger- Wallace, J. D. Sander, F. Muller-Lerch, F. Fu, J. Pearlberg, C. Gobel, JustinDassie, S. M. Pruett-Miller, M. H. Porteus, D. C. Sgroi, A. J. Iafrate, D. Dobbs, P. B. McCray Jr, T. Cathomen, D. F. Voytas, and J. K. Joung (2008) Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell. 31: 294-301. https://doi.org/10.1016/j.molcel.2008.06.016
  33. Sander, J. D., P. Zaback, J. K. Joung, D. F. Voytas, and D. Dobbs (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucl. Acids Res. 35: W599-605. https://doi.org/10.1093/nar/gkm349
  34. Wah, D. A., J. Bitinaite, I. Schildkraut, and A. K. Aggarwal (1998) Structure of FokI has implications for DNA cleavage. Proc. Natl. Acad. Sci. USA. 95: 10564-10569. https://doi.org/10.1073/pnas.95.18.10564
  35. Bitinaite, J., D. A. Wah, A. K. Aggarwal, and I. Schildkraut (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA. 95: 10570-10575. https://doi.org/10.1073/pnas.95.18.10570
  36. Vanamee, E. S., S. Santagata, and A. K. Aggarwal (2001) FokI requires two specific DNA sites for cleavage. J. Mol. Biol. 309: 69-78. https://doi.org/10.1006/jmbi.2001.4635
  37. Guo, J., T. Gaj, and C. F. Barbas Iii (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J. Mol. Biol. 400: 96-107. https://doi.org/10.1016/j.jmb.2010.04.060
  38. Szczepek, M., V. Brondani, J. Buchel, L. Serrano, D. J. Segal, and T. Cathomen (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotech. 25: 786-793. https://doi.org/10.1038/nbt1317
  39. Mino, T., Y. Aoyama, and T. Sera (2009) Efficient double-stranded DNA cleavage by artificial zinc-finger nucleases composed of one zinc-finger protein and a single-chain FokI dimer. J. Biotechnol. 140: 156-161. https://doi.org/10.1016/j.jbiotec.2009.02.004
  40. Cai, C., Y. Doyon, W. Ainley, J. Miller, R. DeKelver, E. Moehle, J. Rock, Y.-L. Lee, R. Garrison, L. Schulenberg, R. Blue, A. Worden, L. Baker, F. Faraji, L. Zhang, M. Holmes, E. Rebar, T. Collingwood, B. Rubin-Wilson, P. Gregory, F. Urnov, and J. Petolino (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol. Biol. 69: 699-709. https://doi.org/10.1007/s11103-008-9449-7
  41. Beumer, K. J., J. K. Trautman, A. Bozas, J.-L. Liu, J. Rutter, J. G. Gall, and D. Carroll (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences. 105: 19821-19826. https://doi.org/10.1073/pnas.0810475105
  42. Bronson, S. K., E. G. Plaehn, K. D. Kluckman, J. R. Hagaman, N. Maeda, and O. Smithies (1996) Singlecopy transgenic mice with chosen-site integration. Proc. Natl. Acad. Sci. USA. 93: 9067-9072. https://doi.org/10.1073/pnas.93.17.9067
  43. Bibikova, M., M. Golic, K. G. Golic, and D. Carroll (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 161: 1169-1175.
  44. Carroll, D., K. J. Beumer, J. J. Morton, A. Bozas, and J. K. Trautman (2008) Gene Targeting in Drosophila and Caenorhabditis elegans With Zinc-Finger Nucleases. pp. 63-77. In: Davis, D. G, and Kevin J. Kayser (eds.). Chromosomal Mutagenesis. Humana Press, Totowa, New Jersey.
  45. Foley, J. E., J.-R. J. Yeh, M. L. Maeder, D. Reyon, J. D. Sander, R. T. Peterson, and J. K. Joung (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS ONE. 4: e4348. https://doi.org/10.1371/journal.pone.0004348
  46. Doyon, Y., J. M. McCammon, J. C. Miller, F. Faraji, C. Ngo, G. E. Katibah, R. Amora, T. D. Hocking, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, and S. L. Amacher (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotech. 26: 702-708. https://doi.org/10.1038/nbt1409