DOI QR코드

DOI QR Code

Proteomic Analysis of Haptoglobin and Amyloid A Protein Levels in Patients with Vivax Malaria

  • Bahk, Young-Yil (Department of Integrated OMICS for Biomedical Sciences, Graduate School, Yonsei University) ;
  • Na, Byoung-Kuk (Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Cho, Shin-Hyeong (Division of Malaria and Parasitic Diseases, National Institute of Health) ;
  • Kim, Jung-Yeon (Division of Malaria and Parasitic Diseases, National Institute of Health) ;
  • Lim, Kook-Jin (National Core Research Center for Nanomedical Technology, Yonsei University) ;
  • Kim, Tong-Soo (Department of Parasitology, Inha University School of Medicine)
  • Received : 2010.07.01
  • Accepted : 2010.08.31
  • Published : 2010.09.30

Abstract

Advancements in the field of proteomics have provided great opportunities for the development of diagnostic and therapeutic tools against human diseases. In this study, we analyzed haptoglobin and amyloid A protein levels of vivax malaria patients with combinations of depletion of the abundant plasma proteins, 2-dimensional gel electrophoresis (2-DE), image analysis, and mass spectrometry in the plasma between normal healthy donors and vivax malaria patients. The results showed that the expression level of haptoglobin had become significantly lower or undetectable in the plasma of vivax malaria patients due to proteolytic cleavage when compared to healthy donors on 2-DE gels. Meanwhile, serum amyloid A protein was significantly increased in vivax malaria patient's plasma with high statistical values. These 2 proteins are common acute phase reactants and further large scale evaluation with a larger number of patient's will be necessary to establish the possible clinical meaning of the existential changes of these proteins in vivax malaria patients. However, our proteomic analysis suggests the feasible values of some plasma proteins, such as haptoglobin and serum amyloid A, as associating factor candidates for vivax malaria.

Keywords

References

  1. Sachs J, Malaney P. The economic and social burden of malaria. Nature 2002; 415: 680-685. https://doi.org/10.1038/415680a
  2. Hemingway J, Bates I. Malaria: past problems and future prospects. EMBO Reports 2003; 4: S29-S31. https://doi.org/10.1038/sj.embor.embor841
  3. Galinski MR, Barnwell JW. Plasmodium vivax merozoite invasion of reticulocytes and considera-tions for malaria vaccine development. Parasitol Today 1996; 12: 20-29. https://doi.org/10.1016/0169-4758(96)80641-7
  4. Richardson DC, Ciach M, Zhong KJY, Crandall I, Kain KC. Evaluation of the Markromed dipstick assay versus PCR for diagnosis of Plasmodium falciparum malaria in returned travelers. J Clin Microbiol 2002; 40: 4528-4530.
  5. Snounou G, Viriyakosol S, Zhu XP, Jerra W, Pinheiro L, Rosaria VE, Thaithong V, Brown KN. High sensitivity of detection of human malaria parasites by the use of nest polymerase chain reaction. Mol Biochem Parasitol 1993; 61: 315-320. https://doi.org/10.1016/0166-6851(93)90077-B
  6. Jacobs JM, Adkins JN, Qian WJ, Liu T, Shen Y, Camp DG 2nd, Smith RD. Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res 2005; 4: 1073-1085. https://doi.org/10.1021/pr0500657
  7. Mateos-Caceres PJ, Garcia-Mendez A, Lopez Farre A, Macaya C, Nunez A, Gomez J, Alonso-Orgaz S, Carrasco C, Burgos ME, de Andres R, Granizo JJ, Farre J, Rico LA. Proteomic analysis of plasma from patients during an acute coronary syndrome. J Am Coll Cardiol 2004; 44: 1578-1583. https://doi.org/10.1016/j.jacc.2004.06.073
  8. Hershko AY, Naparstek Y. Autoimmunity in the era of genomics and proteomics. Autoimmun Rev 2006; 5: 230-233. https://doi.org/10.1016/j.autrev.2005.07.003
  9. Albitar M, Potts SJ, Giles FJ, O'Brien S, Keating M, Thomas D, Clarke C, Jilani I, Aguilar C, Estey E, Kantarjian H. Proteomicbased prediction of clinical behavior in adult acute lymphoblastic leukemia. Cancer 2006; 106: 1587-1594. https://doi.org/10.1002/cncr.21770
  10. Hudelist G, Singer CF, Pischinger KI, Kaserer K, Manavi M, Kubista E, Czerwenka KF. Proteomic analysis in human breast cancer: identification of a characteristic protein expression profile of malignant breast epithelium. Proteomics 2006; 6: 1989-2002. https://doi.org/10.1002/pmic.200500129
  11. Yan JX, Wait R, Berkelman T, Harry RA. A modified silver staining protocol for visualization of proteins compatible with matrixassisted laser desorption/ionization and electrospray ionization mass spectrometry. Electrophoresis 2000; 21: 3666-3672. https://doi.org/10.1002/1522-2683(200011)21:17<3666::AID-ELPS3666>3.0.CO;2-6
  12. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996; 68: 850-858. https://doi.org/10.1021/ac950914h
  13. Park JW, Kim S, Bahk YY. A proteomic approach for dissecting H-Ras signaling networks in NIH/3T3 mouse embryonic fibroblast cells. Proteomics 2006; 6: 2433-2443. https://doi.org/10.1002/pmic.200500688
  14. Kim S, Lee YZ, Kim YS, Bahk YY. A proteomic approach for protein- profiling the oncogenic ras induced transformation (H-, K-, and N-Ras) in NIH/3T3 mouse embryonic fibroblasts. Proteomics 2008; 8: 3082-3093. https://doi.org/10.1002/pmic.200800106
  15. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK. Identification of the haemoglobin scavenger receptor. Nature 2001; 409: 198-201. https://doi.org/10.1038/35051594
  16. McQuire W, D'Alessandro U, Olaleye BO, Thomson MC, Langerock P, Greenwood BM, Kwiakowski D. Creactive protein and haptoglobin in the evaluation of a community-based malaria control programme. Trans R Soc Trop Med Hyg 1996; 90: 10-14. https://doi.org/10.1016/S0035-9203(96)90461-7
  17. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1: 845-867. https://doi.org/10.1074/mcp.R200007-MCP200
  18. Anderson NL, Anderson NG. Microheterogeneity of serum transferrin, haptoglobin and 2 HS glycoprotein examined by high resolution two-dimensional electrophoresis. Biochem Biophys Res Commun 1979; 8: 258-265.
  19. Baumann H, Gauldie J. The acute phase response. Immunol Today 1994; 15: 74-80. https://doi.org/10.1016/0167-5699(94)90137-6
  20. Gabay C, Kushner I. Mechanisms of disease: acute-phase proteins and other systemic responses to inflammation. N Eng J Med 1999; 340: 448-454. https://doi.org/10.1056/NEJM199902113400607
  21. Malle E, Sodin-Semrl S, Kovacevic A. Serum amyloid A: An acutephase protein involved in tumor pathogenesis. Cell Mol Life Sci 2009; 66: 9-26. https://doi.org/10.1007/s00018-008-8321-x
  22. Liu DH, Wang XM, Zhang LJ, Dai SW, Liu LY, Liu JF, Wu SS, Yang SY, Fu S, Xiao XY, He DC. Serum amyloid A protein: a potential biomarker correlated with clinical stage of lung cancer. Biomed Environ Sci 2007; 20: 33-40.
  23. d'Eril GM, Anesi A, Maggiore M, Leoni V. Biological variation of serum amyloid A in healthy subjects. Clin Chem 2001; 47: 1498- 1499.
  24. Gillespie SH, Dow C, Raynes JG, Behrens RH, Chiodini PL, Mc- Adam KPWJ. Measurement of acute phase proteins for assessing severity of Plasmodium falciparum. J Clin Pathol 1991; 44: 228- 231. https://doi.org/10.1136/jcp.44.3.228

Cited by

  1. Comparative Proteomic Studies on Serum of Brucellosis Dairy Cows and Health Dairy Cows vol.11, pp.11, 2012, https://doi.org/10.3923/javaa.2012.1864.1867
  2. Proteomic Investigation of Falciparum and Vivax Malaria for Identification of Surrogate Protein Markers vol.7, pp.8, 2012, https://doi.org/10.1371/journal.pone.0041751
  3. Differential expression of serum/plasma proteins in various infectious diseases: Specific or nonspecific signatures vol.8, pp.1, 2010, https://doi.org/10.1002/prca.201300074
  4. Plasma Proteomics Analysis of Dairy Cows with Milk Fever Using SELDI-TOF-MS vol.9, pp.1, 2010, https://doi.org/10.3923/ajava.2014.1.12
  5. The changes of serum proteome and tissular pathology in mouse induced by botulinum toxin E injection vol.41, pp.4, 2010, https://doi.org/10.1007/s11033-014-3109-6
  6. Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria vol.10, pp.4, 2010, https://doi.org/10.1371/journal.ppat.1004038
  7. Mass spectral analysis of urine proteomic profiles of dairy cows suffering from clinical ketosis vol.35, pp.3, 2010, https://doi.org/10.1080/01652176.2015.1055352
  8. Proteomics ofPlasmodium vivaxmalaria: new insights, progress and potential vol.13, pp.8, 2010, https://doi.org/10.1080/14789450.2016.1210515
  9. Oxidized Hemoglobin Is Antigenic and Immunogenic in Lupus vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.00732
  10. Quantitative Proteomics Analysis of Plasmodium vivax Induced Alterations in Human Serum during the Acute and Convalescent Phases of Infection vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-04447-5
  11. Protein profiling of plasma proteins in dairy cows with subclinical hypocalcaemia vol.70, pp.1, 2017, https://doi.org/10.1186/s13620-017-0082-0
  12. Malaria in India: The Need for New Targets for Diagnosis and Detection ofPlasmodium vivax vol.12, pp.4, 2018, https://doi.org/10.1002/prca.201700024
  13. A Proteogenomic Analysis of Haptoglobin in Malaria vol.12, pp.4, 2018, https://doi.org/10.1002/prca.201700077
  14. The use of proteomics for the identification of promising vaccine and diagnostic biomarkers in Plasmodium falciparum vol.147, pp.12, 2020, https://doi.org/10.1017/s003118202000102x
  15. Haptoglobin as a Biomarker vol.15, pp.3, 2021, https://doi.org/10.1134/s1990750821030069
  16. Haemoglobin drives inflammation and initiates antigen spread and nephritis in lupus vol.165, pp.1, 2022, https://doi.org/10.1111/imm.13418