DOI QR코드

DOI QR Code

Compression Method for Digital Hologram using Motion Prediction Method in Frequency-domain

주파수 영역에서 움직임 예측을 이용한 디지털 홀로그램 압축 기법

  • 최현준 (안양대학교 정보통신공학과) ;
  • 배윤진 (광운대학교 실감미디어 연구소) ;
  • 서영호 (광운대학교 실감미디어 연구소) ;
  • 강창수 (유한대학 전자정보과) ;
  • 김동욱 (광운대학교 실감미디어 연구소)
  • Received : 2010.05.01
  • Accepted : 2010.06.10
  • Published : 2010.09.30

Abstract

This paper proposes a hologram data compression scheme that uses the existing image/video compression techniques, in which the existing techniques are modified appropriately to fit to the characteristics of hologram. In this paper we use CGH as the hologram data. The proposed scheme uses the generation characteristics of a CGH to consist of a pre-processing, spatial segmentation of a CGH, frequency-transformation with 2D-DCT (2-dimensional discrete cosine transform), and motion estimation and residual image generation in the frequency-domain. It uses H.264/AVC, the lossless compressor BinHex, and a linear quantizer that we have made. From the experiments the proposed scheme showed the image quality of about 25.4 dB at the compression ratio of 10:1 and about 16.5dB at 90:1 compression ratio.

본 논문에서는 기존의 영상/비디오 압축 기술을 홀로그램의 특성을 반영하여 변형한 압축 기술을 제안한다. 본 논문에서는 컴퓨터 생성 홀로그램 기법(computer-generated hologram, CGH)을 이용하여 디지털 홀로그램을 획득한다. 제안한 기술은 디지털 홀로그램의 전처리 기술, CGH로 생성한 홀로그램의 공간영역 분할, 2D-DCT를 이용한 주파수 변환, 주파수 영역에서의 움직임 예측과 차영상 생성 등이다. 이 데이터들을 H.264/AVC 코덱, BinHex과 같은 무손실 부호화 기술, 자체 제작한 선형양자화기를 이용하여 압축한다. 실험결과 10:1의 압축률에서 25.4 dB, 100:1에서 16.5 dB의 복원결과를 보였다.

Keywords

References

  1. P. Hariharan, Basics of Holography, Cambridge University Press, May 2002.
  2. B. R. Brown and Adolf W. Lohmann, "Complex spatial filtering with binary masks," Applied Optics, Vol. 5, pp. 967-969, June 1966. https://doi.org/10.1364/AO.5.000967
  3. H. Yoshikawa and K. Sasaki, "Information reduction by limited resolution for electro-holographic display," SPIE Proc. Vol. 1914 Practical Holography VII, pp. 1914-1930, Feb. 1993.
  4. H. Yoshikawa, "Digital holographic signal processing," Proc. TAO First International Symposium on Three Dimensional Image Communication Technologies, pp. S-4-2, Dec. 1993.
  5. H. Yoshikawa and J. tamai, "Holographic image compression by motion picture coding," editor, SPIE Proc. vol 2652 Practical Holography , pp. 2652-01, Jan, 1996.
  6. J. Thomas. Y. Naughton, B. Frauel, Javidi and E. Tajahuerce, "Compression of digital holograms for three-dimensional object reconstruction and recognition," Applied Optics, Vol. 41, No. 20, pp. 4124-4132. July 2002. https://doi.org/10.1364/AO.41.004124
  7. L. Ding, Y. Yan, Q. Xue and G. Jin, "Wavelet packet compression for volume holographic image recognition," Opt. Commun. 216, pp. 105-113, 2003. https://doi.org/10.1016/S0030-4018(02)02327-1
  8. M. Liebling, T. Blu and M. Unser, "Fresnelets : New multiresolution wavelet bases for digital holography," IEEE Trans. Image Process. 12, pp. 29-43, 2003. https://doi.org/10.1109/TIP.2002.806243
  9. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux and B. Javidi, "Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram," Appl. Opt. 41, No.29, pp. 6187-6192, 2002. https://doi.org/10.1364/AO.41.006187
  10. Y. H. Seo, H. J. Choi, and D. W. Kim, "Lossy Coding Technique for Digital Holographic Signal," SPIE Optical Engineering, Vol. 45, No. 6, pp. 065802-1-065802-10, June 2006.