Time Integration Algorithm for the Estimation of Daily Primary Production

식물플랑크톤 일차생산력의 새로운 시간 적분 알고리즘

  • Received : 2010.03.25
  • Accepted : 2010.08.03
  • Published : 2010.08.31

Abstract

In spite of the global importance of primary production of phytoplankton, some primary production data in Korean coastal waters still need to be better processed. The daily rates of water column primary production is generally estimated by integrating the primary production per unit volume over time and depth, but efforts for time integration algorithm have been conducted insufficiently. In this study a mathematical equation evaluating daily primary production integrated over time of a day is proposed and the effectiveness of the model is tested on Saemangeum Lake. The daily primary productions computed with the proposed equation were nearly the same with the results numerically integrated by substituting solar irradiance data. It was suggested that better estimation of primary production would be obtained by using monthly or weekly means of solar irradiance rather than more variable daily data. Because of the vertically heterogenous distribution of phytoplankton, it's hard to integrate the equation over depth to give the daily rates of primary production per unit area of water surface. However, the problem would be solved if, after the vertical distribution of phytoplankton was classified into several patterns and reduced to mathematical formula, every composite function of time integrated equation and chlorophyll distribution equation was integrated successfully.

해양 식물플랑크톤 일차생산력의 전 지구적 중요성에도 불구하고 자료 처리상의 어려움 때문에 국내에서는 신뢰할만한 자료가 많지 않다. 식물플랑크톤 일차생산력은 시간-수심 적분 과정을 거쳐 최종적으로 단위 면적당 하루 일차생산력을 구하지만, 시간 적분에 대한 연구결과는 많지 않은 편이다. 본 연구에서는 단위 시간당 일차생산력을 시간 적분하여 하루 일차생산력을 계산하는 수학적 모델을 제시하고 새만금호를 대상으로 모델의 실효성을 검정해 보았다. 검정 결과, 시간 적분 모델이 일사량 실측치를 대입하여 합산한 결과와 잘 일치하였다. 일차생산력 계산을 위한 기초 광량 자료는 변화가 심한 일 자료보다 한 달 또는 한 주간 평균 자료를 대입하는 것이 더 신뢰성 있는 결과에 도움이 되는 것으로 판단되었다. 일차생산력 수직적분은 수직적으로 불균일한 식물플랑크톤 분포 때문에 어려움이 있으나, 엽록소 분포를 몇 가지 유형으로 분류하여 수식화한 다음, 각 수식을 시간 적분한 일차생산력 모델과 합성하여 적분하면 해결할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 군산대학교 해양개발연구소

References

  1. Abramowitz, M. and Stegun, I.A. 1972. Handbook of Mathematical Functions With Formuls, Graphs, and Mathematical Tables, 9th Pringing. New York: Dover, pp. 358-364.
  2. Baker, K.S. and R. Frouin, 1987. Relation between photosynthetically available radiation and total insolation at the ocean surface under clear skies. Limnol. Oceanogr., 32: 1370-1377. https://doi.org/10.4319/lo.1987.32.6.1370
  3. Bender, M.L, .K. grande, K. Johnson, J Marra, P.J.L. Williams, J Sieburth, M. Pilson, C. Langdon, G. Hitchcock, J. Orchardo, C. Hunt, P. Donaghay, and K. Heinemann, 1987. A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32: 1085-1098. https://doi.org/10.4319/lo.1987.32.5.1085
  4. Bidigare, R.R., B.B. Prezelin, and R.C. Smith, 1992. Bio-optical models and the problems of scaling. In: Primary Productivity and Biogeochemical Cycles in the Sea, edited by Falkowski, P.G., New York, Plenum., pp. 175-212.
  5. Choi, J.K., J.H. Noh, K.S. Shin, and K.H. Hong, 1995. The early autumn distribution of chlorophyll-a and promary production in the Yellow Sea, 1992. The Yellow Sea. 1: 60-80.
  6. Cote B. and T. Platt, 1983. Day-to-day variation in the spring-summer photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr., 28: 320-344. https://doi.org/10.4319/lo.1983.28.2.0320
  7. Cullen, J.J., 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll $\alpha$. Can. J. Fish. Aquat. Sci., 39:791-803. https://doi.org/10.1139/f82-108
  8. Cullen, J.J., 1990. On models of growth and photosynthesis in phytoplankton. Deep-sea Res., 37: 667-683. https://doi.org/10.1016/0198-0149(90)90097-F
  9. Curl, H. and L. F. Small, 1965. Variations in photosynthetic assimilation ratios in natural marine phytoplankton communities. Limnol. Oceanogr., 10: 67-73. https://doi.org/10.4319/lo.1965.10.1.0067
  10. Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin. 70: 1063-1085.
  11. Field, C., M. Bejrenfeld, J. Randerson, and P. Falkowski, 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281: 237-240. https://doi.org/10.1126/science.281.5374.237
  12. Golterman, H.L., 1975. Physiological Limnology. Elsevier Scientific Publishing Company. 504 pp.
  13. Guo, Y.J., 1994. Primary productivity and phytoplankton in China Seas. In: Oceanography of China Seas, edited by Zhou Di et al., Kluw. Acad. Publ. Neth. vol 1, pp. 227-242.
  14. Hancke K., T.B. Hancke, L.M. Olsen and G. Johnsen. 2008. Temperature effects on microalgal photosynthesis-light responses measured by O2 production, pulse-amplitude-modulated fluorescence, and $^{14}C$ assimilation. J. Phycol., 44: 501-514. https://doi.org/10.1111/j.1529-8817.2008.00487.x
  15. Holligan, P.M., W.M. Balch, and C.M. Yentsch, 1984. The significance of subsurface chlorophyll, nitrite and ammonium maxima in relation to nitrogen for phytoplankton growth in stratified waters of Gulf of maine. J. Mar. Res., 42: 1051-1073. https://doi.org/10.1357/002224084788520747
  16. Idso, S.B. and R.G. Gilgert, 1974. On the universality and gide to the marine bluegreen algae. John Wiley & Sons, Inc., 194 pp.
  17. Jitts, H.R., A. Morel and Y. Saijo, 1976. The relation of oceanic primary production to available photosynthetic irradiance. Aust. J. Mar. Freshwater Res. 27: 441-454. https://doi.org/10.1071/MF9760441
  18. Kirk, J. T. O., 1994. Light and photosynthesis in aquatic ecosystems. Cambridge University Press.
  19. Marra, J. 2002. Approaches to the measurement of plankton production. In: Phytoplankton Productivity: Carbon Assimilation in Marine and Freshwater Ecosystems. edited by Williams P.J.B., D.D. Thomas, and C.S. Reynolds, Oxford, UK. Blackwell Science, pp. 78-108.
  20. Morel, A. 1991. Light and marine photosynthesis: a special model with geochemical and climatological implications. Prog. Oceanogr., 26: 263-306. https://doi.org/10.1016/0079-6611(91)90004-6
  21. Parsons T.R, Maita Y, Lalli CM. 1984a. A manual of chemical and biological methods for seawater analysis, Pergamon Press, New York, 173p.
  22. Parsons, T.R., M. Takahashi and B. Hargrave, 1984b. Biological oceanographic processes. 3rd ed. Pergamon Press. 330p.
  23. Peterson, D.H., M.J. Perry, K.E. Bencala and M.C. Talbot, 1987. Phytoplankton Productivity in relation to light intensity: a simple equation. Estuar. Coast. Shelf Sci., 24: 813-832. https://doi.org/10.1016/0272-7714(87)90154-5
  24. Platt, T., C. Gallegos, and W.G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38: 687-701.
  25. Platt, T., S. Sathyendranath, and P.Ravidran, 1990. Primary production by phytoplankton: analytic solution for daily rates per unit area of water surface. Proc. R. Soc. London. Ser. B, 241: 101-111. https://doi.org/10.1098/rspb.1990.0072
  26. Poole, H.H. and W.R.G. Atkins, 1929. Photo-electric measurement of submarine illumination throughout the year. J. Mar. Biol. Ass. U.K., 16: 297-324. https://doi.org/10.1017/S0025315400029829
  27. Raateoja, M.P. 2004. Fast repetition rate fluorometry (FRRF) measuring phytoplankton productivity: A case study at the entrance to the Gulf of Finland, Baltic Sea. Boeral Environ. Res., 9: 263-279.
  28. Serodio, J. 2003. A chlorophyll fluoresecence index to estimate shortterm rates of photosynthesis by intertidal microphytobenthos. J. Phycol., 39: 33-46.
  29. Steemann Nielson, E., 1952. The use of radio-active carbon $(^{14}C)$ for measuring organic production in the sea. J. Cons. Int. Explor. Mer., 18: 117-140. https://doi.org/10.1093/icesjms/18.2.117
  30. Talling, J.F., 1957. Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol., 56: 133-149. https://doi.org/10.1111/j.1469-8137.1957.tb06962.x
  31. Webb, W.L., M. Newton and D. Starr, 1974. Carbon dioxide exchange of alnus rubra: a mathematical medel. Oecologia, 17: 281-291. https://doi.org/10.1007/BF00345747