Abstract
In the applications of a human speech interface, reducing the error rate in recognition is the one of the main research issues. Many previous studies attempted to correct errors using post-processing, which is dependent on a manually constructed corpus and correction patterns. We propose an automatically learnable post-processing method that is independent of the characteristics of both the domain and the speech recognizer. We divide the entire post-processing task into two steps: error detection and error correction. We consider the error detection step as a classification problem for which we apply the conditional random fields (CRFs) classifier. Furthermore, we apply transformation-based learning (TBL) to the error correction step. Our experimental results indicate that the proposed method corrects a speech recognizer's insertion, deletion, and substitution errors by 25.85%, 3.57%, and 7.42%, respectively.
음성 인식기의 오류는 음성기반 응용 시스템들의 성능에 크게 영향을 주기 때문에 오류를 줄이기 위한 효과적인 처리 방법이 필요하다. 기존의 후처리 기법들은 수동 작업을 통한 코퍼스나 규칙으로 후처리를 수행하는 것이 일반적이다. 본 논문에서는 문제나 인식기의 특성에 무관하게 자동으로 학습할 수 있는 후처리 모델을 제안한다. 후처리의 문제를 오류의 인식과 수정으로 구분하고 오류 검출 문제는 순차적인 분류 문제로 간주하여 conditional random fields(CRFs)를 사용하고 오류 수정 규칙은 transformation-based learning(TBL)을 이용하여 자동 생성하여 적용하였다. 제안한 방법을 여행 예약 영역의 음성 인식기에 적용한 결과 삽입, 삭제, 치환 오류를 각각 25.85%, 3.57%, 7.42%을 수정하였으며, 이로 인해 인식기의 어휘 오류율을 2% 감소시킬 수 있었다.