Antioxidative activity, including Inhibitory activities of ACE, APN and $\alpha$-amylase, in Theaceae Plants Native to Jeju Island

제주도 자생 차나무과 식물의 ACE, APN, $\alpha$-amylase 저해 활성 및 항산화활성에 대한 연구

  • Oh, Soon-Ja (Department of Biology & Research Institute for Basic Sciences, Jeju National University) ;
  • Lee, Jin-Ho (Sulloc Cha Institute of Jangwon Co. Ltd.) ;
  • Ko, Kwang-Sup (Sulloc Cha Institute of Jangwon Co. Ltd.) ;
  • Shin, Dong-Bum (Department of Food Science & Nutrition, Jeju National University) ;
  • Koh, Seok-Chan (Department of Biology & Research Institute for Basic Sciences, Jeju National University)
  • 오순자 (제주대학교 생물학과.기초과학연구소) ;
  • 이진호 ((주)장원 설록차연구소) ;
  • 고광섭 ((주)장원 설록차연구소) ;
  • 신동범 (제주대학교 식품영양학과) ;
  • 고석찬 (제주대학교 생물학과.기초과학연구소)
  • Received : 2010.05.25
  • Accepted : 2010.09.01
  • Published : 2010.10.30

Abstract

Antioxidative activity, including inhibitory activities of angiotensin I converting enzyme(ACE), aminopeptidase N(APN) and $\alpha$-amylase, was investigated in the methanol extracts from Theaceae plants native to Jeju island, in order to select the plant species containing bioactive materials for functional food or medicines. ACE inhibitory activity was above 50% in Ternstroemia japonica(stem bark) and Cleyera japonica(leaf), and APN inhibitory activity was low to be positive only in C. japonica(leaf, stem bark) and T. japonica(stem bark). $\alpha$-Amylase inhibitory activity was above 30% in Camellia japonica(fruit), Eurya emarginata(stem), T. japonica(stem bark) and Thea sinensis(stem). The antioxidative activity, estimated by the DPPH radical scavenging capacity, was above 30% in C. japonica(stem bark), T. japonica(stem bark) and T. sinensis(leaf). Particularly, the antioxidative activity analyzed by dot-blot test was very high in C. japonica(stem bark) relatively to those of other plants, and remained high in the low concentration($1.25\;{\mu}g/m{\ell}$). From the TLC analysis of antioxidative compounds, EGC(Rf 0.26) was found to have high activity in stem bark of C. japonica and EGCG(Rf 0.09) was found to have high activity in stem bark of C. japonica, E. emarginata, and T. japonica. Five bands (Rf 0.54, 0.46,0.44, 0.16, 0.03) which were not identified as compared with catechins were detected as polyphenolic compounds on the TLC plates sprayed with the Folin-Ciocalteu solution or the Ferric chloride-alcohol solution. These results suggests that Theaceae plants except E. japonica could be potentially used as a resource of bioactive materials for functional foods or medicines and further research is reguired to identify the bioactive substances and determine the functions of them.

본 연구는 제주도에 자생하는 차나무과 식물을 대상으로 식품소재 또는 생약으로의 활용 방안을 모색하고자 angiotensin I converting enzyme(ACE) 저해활성, aminopeptidase N(APN) 저해활성 및 $\alpha$-amylase 저해활성을 조사하고, 항산화활성을 검색하고 TLC를 이용하여 분석하였다. ACE 저해활성은 후피향나무(수피)와 비쭈기나무(잎)에서 50% 이상의 저해활성을 보였으며, APN 저해활성은 비쭈기나무(잎과 수피)와 후피향나무(수피)에서만 양의 활성을 보였다. $\alpha$-amylase 저해활성은 동백나무(열매), 우묵사스레피나무(수피), 후피향나무(수피)와 차나무(줄기)에서 30% 이상의 저해활성을 보였다. 항산화활성은 비쭈기나무(수피), 후피향나무(수피), 차나무(잎)에서 30% 이상의 다소 높은 전자공여능을 나타내었다. 특히, 비쭈기나무(수피)는 dot-blot test에 의해 다른 종에 비해 활성이 높아 $1.25\;{\mu}g/ml$의 낮은 농도에서도 높은 항산화활성을 보였다. TLC 분석에 의해 비쭈기나무(수피)에서 EGC(Rf 0.26) 활성이 높았으며, 비쭈기나무, 우묵사스레피나무, 후피향나무의 수피에서 EGCG(Rf 0.09) 활성이 높게 검출되었다. 그리고, 표준 catechin류와는 다른 것으로 보이는 5개의 밴드(Rf 0.54, 0.46, 0.44, 0.16, 0.03)는 Folin-Ciocalteu Reagent 방법과 Ferric chloride-alcohol 방법을 이용하여 polyphenol류인 것으로 추정되었다. 이상의 결과를 토대로 사스레피나무를 제외한 차나무과 식물들은 생리활성이 높아 식품 소재 또는 생약으로의 활용이 가능할 것으로 보이며, 활성성분의 분리 및 동정 그리고 이들 물질을 이용한 임상실험 등 보다 심도있는 연구가 필요할 것으로 보인다.

Keywords

References

  1. Alscher R.G. and J.L. Hess. 1993. Antioxidants in higher plants. CRC Press, Boca Raton. pp.1-174.
  2. Bala, M., M.A.Q. Pasha, D.K. Bhardwaj and S. Pasha. 2002. Novel peptidomimics as angiotensin-converting enzyme inhibitions: A combinatorial approach. Bioorg. Med. Chem. 10(11):3685-3691. https://doi.org/10.1016/S0968-0896(02)00166-9
  3. Bauvois B. and D. Dauzonne. 2006. Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med. Res. Rev. 26(1):88-130. https://doi.org/10.1002/med.20044
  4. Blois, M.S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181:1199-1200. https://doi.org/10.1038/1811199a0
  5. Branen, A.L. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52:59-63. https://doi.org/10.1007/BF02901825
  6. Choe, S. Y. and K. H. Yang. 1982. Toxicological studies of antioxidants, butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA). Korean J. Food Sci. Technol. 14(3):283-188.
  7. Chung, M.C., H.K. Chun, K.H. Han, H.J. Lee, C.H. Lee and Y.H. Kho. 1996. MR-387A and B, new aminopeptidase N inhibitors, produced by Streptomyces neyagawaensis SL-387. J. Antibiot. 49:99-102. https://doi.org/10.7164/antibiotics.49.99
  8. Do, J.R., S.B. Kim, Y.H. Park, D.S. Kim, 1993. Angiotensin-Iccoverting enzyme inhibitory activity by the components of traditional tea materials. Kor. J. Food Sci. Technol. 25:456-460.
  9. Fridovich, I. 1978. The biology of oxygen radicals. Science 201(4359):875-880. https://doi.org/10.1126/science.210504
  10. Graham, H.N., 1992. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 21(3):334-350. https://doi.org/10.1016/0091-7435(92)90041-F
  11. Gros, C., B. Giros and J.C. Schwartz. 1985. Identification of aminopeptidase M as an enkephalin-inactivating enzyme in rat cerebral membranes. Biochemistry 24:2179-2185. https://doi.org/10.1021/bi00330a011
  12. Hong, J.H., B.S. Son, B.K. Kim, H.Y. Chee, K.S. Song, B.H. Lee, H.C. Shin, and K.B. Lee, 2006. Antihypertensive effect of Ecklonia cava extract. Kor. J. Pharmacogn. 37:200-205.
  13. Hou, W.C., R.D. Lin, K.T. Cheng, Y.T. Hung, C.H. Cho, C.H. Chen, S.Y. Hwang and M.H. Lee, 2003. Free radical scavenging activity of Taiwanese native plants. Phytomedicine 10:170-175. https://doi.org/10.1078/094471103321659898
  14. Hwang, E.J., Y.J. Cha, M.H. Park, J.W. Lee and S.Y. Lee, 2004. Cytotoxicity and chemosensitizing effect of camellia (Camellia japonica) tea extracts. J. Korean Soc. Food Sci. Nutr. 33(3):487-493. https://doi.org/10.3746/jkfn.2004.33.3.487
  15. Inze D. and M. Van Montagu. 1995. Oxidative stress in plants. Curr. Opin. Biotech. 6:153-158. https://doi.org/10.1016/0958-1669(95)80024-7
  16. Lee, S. Y., E. J. Hwang, G. H. Kim, Y. B. Choi, C. Y. Lim and S. M. Kim. 2005. Antifungal and antioxidant activities of extracts from leaves and flowers of Camellia japonica L.. Korean J. Med. Crop Sci. 13(3):93-100.
  17. Lee, W. C. 1996. Lineamenta florae Koreae(I). Academy Book, Seoul. pp.1687.
  18. Lester, P. and N.G. Alexander. 1993. Oxygen radicals in biological systems. Academic press INC., San Diego. pp.635-650.
  19. Oh, S. J. and S. C. Koh. 2002. Antioxidative activities of solvent fractions from the fruits of several evergreen plants native to Jeju-Do. J. Basic Sciences, Cheju Nat'l Univ. 15(2):69-75.
  20. Oh, S.J., S.H. Kim, S.K. Kim, Y.J. Baek and K.H. Cho. 1997. Angiotensin Ⅰ converting enzyme inhibitory activity of the K-casein fragments hydrolyzated by chymosin, pepsin and trypsin. Korean J. Food Sci. Technol. 29(6):1316-1318.
  21. Ondetti, M.A., B. Rubin and D.W. Cushman. 1977. Design of specific inhibitors of angiotensin. Science 196:441-444. https://doi.org/10.1126/science.191908
  22. Park, S.Y., H.C. Yang, J.Y. Moon, N.H. Lee, S.J. Kim, J.H. Kang, Y.K. Lee, D.B. Park, E.S. Yoo and H.K. Kang. 2005. The cytotoxicity of eutigosides from Eurya emarginata against HL-60 promyelocytic leukemia cells. Arch. Pharm. Res. 28(9):1047-1052. https://doi.org/10.1007/BF02977400
  23. Puls, W and U. Keup. 1973. Influoence of an $\alpha$-amylase inhibitor (BAY d 7791) on blood glucose, serum insulin and NEFA in starch loading tests in rats, dogs and man. Diabetologia 9:97-101. https://doi.org/10.1007/BF01230687
  24. Rhinehart, B.L., K.M. Robinson, P.S. Liu, A.J. Payne, M.E. Wheatley and S.R. Wanger. 1987. Inhibition of intestinal disaccharidase and suppression of blood glocose by a new $\alpha$-glucohydrolase inhibitor-MDL 25. J. Pham. Exp. Ther. 241:915-920.
  25. Satoyama, T., T. Hara, M. Murata and Y. Fujio. 1998. A simple assay method for $\alpha$-amylase using microplates. Nippon Nogeikagaku Kaishi 72:933-936. https://doi.org/10.1271/nogeikagaku1924.72.933
  26. Sealey, J.F. and J.H. Laragh. 1990. Pathophysiology, diagnosis and management. The renin-angiotensis-aldosterone system for normal regulation of blood pressure and sodium and potassium homeostasis. Raven Press, LTD, New York. pp.1287-1317.
  27. Shim, K. H., Y.Ⅰ. Bae and J. S. Moon, 1994. Screening and characterization of α-amylase inhibitors from cereals and legumes in Korea. Korean J. Post-Harvest Sci. Technol. Agri. Products 1(2):117-124.
  28. Shin, M. H. 2001. Antioxidative constituents from the fruits of Ternstroemia japonica Thunberg. PhD Thesis, Pusan National University pp.158.
  29. Toeller, M. 1994. $\alpha$-Glucosidase inhibitors in diabetes: efficacy in NIDDM subjects. Eur. J. Clin. Invest. 24:31-35.
  30. Yamamoto, N., 1997. Antihypertensive peptides derived from food proteins. Biopolymers 43:129-134. https://doi.org/10.1002/(SICI)1097-0282(1997)43:2<129::AID-BIP5>3.0.CO;2-X
  31. You, H. S. 2008. Phytochemical constituents and biological activity of Eurya emarginata (Thunb.) Makino. Ph D thesis, Sungkyunkwan University. pp.98.