DOI QR코드

DOI QR Code

Effects of Baicalin on Gene Expression Profiles during Adipogenesis of 3T3-L1 Cells

3T3-L1 세포의 지방세포형성과정에서 Baicalin에 의한 유전자 발현 프로파일 분석

  • Lee, Hae-Yong (Dept. of Microbiology, Chung-Ang University College of Medicine) ;
  • Kang, Ryun-Hwa (Dept. of Microbiology, Chung-Ang University College of Medicine) ;
  • Chung, Sang-In (Dept. of Microbiology, Chung-Ang University College of Medicine) ;
  • Cho, Soo-Hyun (Dept. of Family Medicine, Yongsan Hospital, Chung-Ang University) ;
  • Yoon, Yoo-Sik (Dept. of Microbiology, Chung-Ang University College of Medicine)
  • 이해용 (중앙대학교 의과대학 미생물학교실) ;
  • 강련화 (중앙대학교 의과대학 미생물학교실) ;
  • 정상인 (중앙대학교 의과대학 미생물학교실) ;
  • 조수현 (중앙대학교 용산병원 가정의학과) ;
  • 윤유식 (중앙대학교 의과대학 미생물학교실)
  • Published : 2010.01.30

Abstract

Baicalin, a flavonoid, was shown to have diverse effects such as anti-inflammatory, anti-cancer, anti-viral, anti-bacterial and others. Recently, we found that the baicalin inhibits adipogenesis through the modulations of anti-adipogenic and pro-adipogenic factors of the adipogenesis pathway. In the present study, we further characterized the molecular mechanism of the anti-adipogenic effect of baicalin using microarray technology. Microarray analyses were conducted to analyze the gene expression profiles during the differentiation time course (0 day, 2 day, 4 day and 7 day) in 3T3-L1 cells with or without baicalin treatment. We identified a total of 3972 genes of which expressions were changed more than 2 fold. These 3972 genes were further analyzed using hierarchical clustering analysis, resulting in 20 clusters. Four clusters among 20 showed clearly up-regulated expression patterns (cluster 8 and cluster 10) or clearly down-regulated expression patterns (cluster 12 and cluster 14) by baicalin treatment for over-all differentiation period. The cluster 8 and cluster 10 included many genes which enhance cell proliferation or inhibit adipogenesis. On the other hand, the cluster 12 and cluster 14 included many genes which are related with proliferation inhibition, cell cycle arrest, cell growth suppression or adipogenesis induction. In conclusion, these data provide detailed information on the molecular mechanism of baicalin-induced inhibition of adipogenesis.

Flavonoid 계열의 한 종류인 baicalin은 항염증, 항암, 항바이러스, 항세균 등의 효능을 가진다. 본 연구진은 선행연구를 통한 이전의 보고에서 baiclain이 adipogenesis pathway(지방세포 형성 경로)의 anti-adipogenic(지방세포 형성억제)과 pro-adipogenic(지방세포 형성 유도) factor들을 조절함으로써 비만 및 adipogenesis를 억제함을 밝혔다. 본 연구에서는, microarray 기술을 이용하여 3T3-L1 세포에서 baiclain이 유도하는 지방세포 형성 억제 효과에 대한 분자적 기작을 보다 상세하게 연구하고자 하였다. 지방세포의 분화 시간(0일, 2일, 4일 및 7일)과 분화 시 baicalin의 처리 유무에 따라 유전자 발현 양상을 분석하기 위해 해당 시료들을 microarray에 적용하였다. Microarray 결과로부터 2배이상의 변화가 있는 3972개의 유전자를 확보하였다. 그 유전자들의 발현 양상을 좀 더 자세히 살펴보기 위해 hierarchical clustering 분석을 진행하였고 그 결과로 20개의 cluster를 분류할 수 있었다. 그들 중 4개의 cluster는 분화의 전반적인 기간에서 baicalin의 첨가에 의해 뚜렷하게 상승(cluster 8과 cluster 10)하거나 반대로 뚜렷하게 감소(cluster 12와 cluster 14)하는 양상을 보였다. Cluster 8과 cluster 10에는 CHOP(CCAAT/enhancer-binding protein homologous protein), INSIG1(insulin induced gene 1), WISP2(WNT1 inducible signaling pathway protein 2), ADM(adrenomedullin), CCND2(cyclin D2), GRN(granulin) 및 TGFB3(transforming growth factor, beta 3)과 같은 세포 증식과 지방세포 형성 억제를 상승시키는 유전자들이 다수 포함되었다. 반대로 cluster 12와 cluster 14에는 세포 증식 억제, 세포 주기 억제 및 세포 성장 억제와 연관되거나 지방세포를 유도하는 유전자인 LTA(lympotoxin A), ACADSB(acyl-Coenzyme A dehydrogenase, short/branched chain), HMGCS2(3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2), IGFBP7(insulin-like growth factor binding protein 7), MERTK(c-merproto-oncogene tyrosine kinase), RASSF2(ras association(RalGDS/AF-6) domain family 2), RHOU(ras homolog gene family, member U) 및 SESN1(sestrin1) 등이 포함되었다. 결론적으로 baicalin은 세포 증식 및 지방세포 형성과 연관된 유전자들을 조절함으로써 지방세포의 분화를 억제하는 것으로 사료된다. 이러한 결과는 baicalin이 유도하는 지방세포 형성 억제 및 비만 억제 효과의 분자적 기작에 대한 중요한 정보를 제시한다.

Keywords

References

  1. Darlington GJ, Ross SE, MacDougald OA. 1998. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273: 30057-30060. https://doi.org/10.1074/jbc.273.46.30057
  2. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J. 1996. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. Embo J 15: 5336-5348.
  3. Cornelius P, MacDougald OA, Lane MD. 1994. Regulation of adipocyte development. Annu Rev Nutr 14: 99-129. https://doi.org/10.1146/annurev.nu.14.070194.000531
  4. Gregoire FM, Smas CM, Sul HS. 1998. Understanding adipocyte differentiation. Physiol Rev 78: 783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  5. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14: 1675-1680. https://doi.org/10.1038/nbt1296-1675
  6. Guo X, Liao K. 2000. Analysis of gene expression profile during 3T3-L1 preadipocyte differentiation. Gene 251: 45-53. https://doi.org/10.1016/S0378-1119(00)00192-X
  7. Havsteen B. 1983. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32: 1141-1148. https://doi.org/10.1016/0006-2952(83)90262-9
  8. Middleton E Jr, Kandaswami C, Theoharides TC. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673-751.
  9. Seelinger G, Merfort I, Schempp CM. 2008. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med 74: 1667-1677. https://doi.org/10.1055/s-0028-1088314
  10. Chan FL, Choi HL, Chen ZY, Chan PS, Huang Y. 2000. Induction of apoptosis in prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett 160: 219-228. https://doi.org/10.1016/S0304-3835(00)00591-7
  11. Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM. 2000. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun 276: 534-538. https://doi.org/10.1006/bbrc.2000.3485
  12. Liu IX, Durham DG, Richards RM. 2000. Baicalin synergy with beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other beta-lactam-resistant strains of S. aureus. J Pharm Pharmacol 52: 361-366. https://doi.org/10.1211/0022357001773922
  13. Lee H, Kang R, Hahn Y, Yang Y, Kim SS, Cho SH, Chung SI, Yoon Y. 2009. Antiobesity effect of baicalin involves the modulation of proadipogenic and antiadipogenic regulators of the adipogenesis pathway. Phytother Res DOI:10.1002/ptr.2937.
  14. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN. 2003. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4: R28. https://doi.org/10.1186/gb-2003-4-4-r28
  15. Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, Brown MS. 1998. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 12: 3182-3194. https://doi.org/10.1101/gad.12.20.3182
  16. Zhang M, Ikeda K, Xu JW, Yamori Y, Gao XM, Zhang BL. 2009. Genistein suppresses adipogenesis of 3T3-L1 cells via multiple signal pathways. Phytother Res 23: 713-718. https://doi.org/10.1002/ptr.2724
  17. Saito T, Abe D, Sekiya K. 2008. Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARgamma2. Biochem Biophys Res Commun 372: 835-839. https://doi.org/10.1016/j.bbrc.2008.05.146
  18. Lee J, Jung E, Lee J, Kim S, Huh S, Kim Y, Kim Y, Byun SY, Kim YS, Park D. 2009. Isorhamnetin represses adipogenesis in 3T3-L1 cells. Obesity (Silver Spring) 17: 226-232. https://doi.org/10.1038/oby.2008.472
  19. Fajas L. 2003. Adipogenesis: a cross-talk between cell proliferation and cell differentiation. Ann Med 35: 79-85. https://doi.org/10.1080/07853890310009999
  20. Rosen ED, MacDougald OA. 2006. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7: 885-896. https://doi.org/10.1038/nrm2066
  21. Adams CM, Reitz J, De Brabander JK, Feramisco JD, Li L, Brown MS, Goldstein JL. 2004. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J Biol Chem 279: 52772-52780. https://doi.org/10.1074/jbc.M410302200
  22. Saxena N, Banerjee S, Sengupta K, Zoubine MN, Banerjee SK. 2001. Differential expression of WISP-1 and WISP-2 genes in normal and transformed human breast cell lines. Mol Cell Biochem 228: 99-104. https://doi.org/10.1023/A:1013338912642
  23. Ouafik L, Berenguer-Daize C, Berthois Y. 2009. Adrenomedullin promotes cell cycle transit and up-regulates cyclin D1 protein level in human glioblastoma cells through the activation of c-Jun/JNK/AP-1 signal transduction pathway. Cell Signal 21: 597-608. https://doi.org/10.1016/j.cellsig.2009.01.001
  24. Glickstein SB, Monaghan JA, Koeller HB, Jones TK, Ross ME. 2009. Cyclin D2 is critical for intermediate progenitor cell proliferation in the embryonic cortex. J Neurosci 29: 9614-9624. https://doi.org/10.1523/JNEUROSCI.2284-09.2009
  25. Tamamori-Adachi M, Goto I, Yamada K, Kitajima S. 2008. Differential regulation of cyclin D1 and D2 in protecting against cardiomyocyte proliferation. Cell Cycle 7: 3768-3774. https://doi.org/10.4161/cc.7.23.7239
  26. Hao J, Varshney RR, Wang DA. 2008. TGF-beta3: A promising growth factor in engineered organogenesis. Expert Opin Biol Ther 8: 1485-1493. https://doi.org/10.1517/14712598.8.10.1485
  27. Hanington PC, Barreda DR, Belosevic M. 2006. A novel hematopoietic granulin induces proliferation of goldfish (Carassius auratus L.) macrophages. J Biol Chem 281: 9963-9970. https://doi.org/10.1074/jbc.M600631200
  28. Willard J, Vicanek C, Battaile KP, Van Veldhoven PP, Fauq AH, Rozen R, Vockley J. 1996. Cloning of a cDNA for short/branched chain acyl-coenzyme A dehydrogenase from rat and characterization of its tissue expression and substrate specificity. Arch Biochem Biophys 331: 127-133. https://doi.org/10.1006/abbi.1996.0290
  29. Nadal A, Marrero PF, Haro D. 2002. Down-regulation of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by insulin: the role of the forkhead transcription factor FKHRL1. Biochem J 366: 289-297. https://doi.org/10.1042/bj20020598
  30. de Boer VC, van Schothorst EM, Dihal AA, van der Woude H, Arts IC, Rietjens IM, Hollman PC, Keijer J. 2006. Chronic quercetin exposure affects fatty acid catabolism in rat lung. Cell Mol Life Sci 63: 2847-2858. https://doi.org/10.1007/s00018-006-6316-z
  31. Kato MV, Sato H, Tsukada T, Ikawa Y, Aizawa S, Nagayoshi M. 1996. A follistatin-like gene, mac25, may act as a growth suppressor of osteosarcoma cells. Oncogene 12: 1361-1364.
  32. Kanemitsu N, Kato MV, Miki T, Komatsu S, Okazaki Y, Hayashizaki Y, Sakai T. 2000. Characterization of the promoter of the murine mac25 gene. Biochem Biophys Res Commun 279: 251-257. https://doi.org/10.1006/bbrc.2000.3944
  33. Guttridge KL, Luft JC, Dawson TL, Kozlowska E, Mahajan NP, Varnum B, Earp HS. 2002. Mer receptor tyrosine kinase signaling: prevention of apoptosis and alteration of cytoskelosil architecture without stimulation or proliferation. J Biol Chem 277: 24057-24066. https://doi.org/10.1074/jbc.M112086200