DOI QR코드

DOI QR Code

Neuroprotective Effect of Taurine against Oxidative Stress-Induced Damages in Neuronal Cells

  • Yeon, Jeong-Ah (Department of Pharmacology and Toxicology, School of Dentistry, Kyung Hee University) ;
  • Kim, Sung-Jin (Department of Pharmacology and Toxicology, School of Dentistry, Kyung Hee University)
  • Published : 2010.01.31

Abstract

Taurine, 2-aminoethanesulfonic acid, is an abundant free amino acid present in brain cells and exerts many important biological functions such as anti-convulsant, modulation of neuronal excitability, regulation of learning and memory, anti-aggressiveness and anti-alcoholic effects. In the present study, we investigated to explore whether taurine has any protective actions against oxidative stress-induced damages in neuronal cells. ERK I/II regulates signaling pathways involved in nitric oxide (NO) and reactive oxygen species (ROS) production and plays a role in the regulation of cell growth, and apoptosis. We have found that taurine significantly inhibited AMPA induced cortical depolarization in the Grease Gap assays using rat cortical slices. Taurine also inhibited AMPA-induced neuronal cell damage in MTT assays in the differentiated SH-SY5Y cells. When the neuronal cells were treated with $H_2O_2$, levels of NO were increased; however, taurine pretreatment decreased the NO production induced by $H_2O_2$ to approximately normal levels. Interestingly, taurine treatment stimulated ERK I/II activity in the presence of AMPA or $H_2O_2$, suggesting the potential role of ERK I/II in the neuroprotection of taurine. Taken together, taurine has significant neuroprotective actions against AMPA or $H_2O_2$ induced damages in neuronal cells, possibly via activation of ERK I/II.

Keywords

References

  1. Aikawa, R., Nawano, M., Gu, Y., Katagiri, H., Asano, T., Zhu, W., Nagai, R. and Komuro, I. (2000). Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 102, 2873-2879. https://doi.org/10.1161/01.CIR.102.23.2873
  2. Black, M. D., Wotanis, J., Schillip, D. E., Hanak, S. E., Sorensen, S. M., Wettstein, J. G. (2000). Effect of AMPA receptor modulators on hippocampal and cortical function. Eur. J. Pharmacol. 394, 85-90. https://doi.org/10.1016/S0014-2999(00)00120-5
  3. Canas, N., Valero, T., Villarroya, M., Montell, E., Verges, J., Garcia, A. G. and Lopez, M. G. (2007). Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing Heme Oxygenase-1 via Phosphatidylinositol 3-kinase/Akt. J. Pharmacol. Exp. Therap. 323, 946-953. https://doi.org/10.1124/jpet.107.123505
  4. Chandra, J., Samali, A. and Orrenius, S. (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radical Biol. & Medicine 29, 323-333. https://doi.org/10.1016/S0891-5849(00)00302-6
  5. Chen, L., Liu, L., Yin, J., Luo, Y. and Huang, S. (2009). Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int. J. Biochem & Cell Biol. 41, 1284-1295. https://doi.org/10.1016/j.biocel.2008.10.029
  6. Cheung, Y. T., Lau, W. K. W., Yu, M. S., Lai, C. S. W., Yeung, S. C., So K. F. and Chang, R. C. C. (2009). Effect of all-transretinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicol. 30, 127-135. https://doi.org/10.1016/j.neuro.2008.11.001
  7. Frosini, M. (2007). Changes in CSF composition during heat stress and fever in conscious rabbits. Prog. Brain Res. 162, 449-457. https://doi.org/10.1016/S0079-6123(06)62022-0
  8. Gartwaite, G. and Gartwaite, J. (1991). AMPA neurotoxicity in rat cerebellar and hippocampal slices: histological evidence for three mechanisms. Eur. J. Neurosci. 3, 715-728. https://doi.org/10.1111/j.1460-9568.1991.tb01668.x
  9. Gartwaite, G. and Gartwaite, J. (1991). Mechanisms of AMPA neurotoxicity in cerebellar and hippocampal slices. Eur. J. Neurosci. 3, 729-736. https://doi.org/10.1111/j.1460-9568.1991.tb01669.x
  10. Griffins, T., Evans, M. C. and Meldrum, B. S. (1984). Status epilepticus: the reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus. Neurosci. 12, 557-567. https://doi.org/10.1016/0306-4522(84)90073-3
  11. Harrison, N. L. and Simmonds, M. A. (1985). Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex. Br. J. Pharmacol. 84, 381-391. https://doi.org/10.1111/j.1476-5381.1985.tb12922.x
  12. Jiang, X., Ai, C., Shi, E., Nakajima, Y. and Ma, H. (2009). Neuroprotection against spinal cord ischemia-reperfusion injury induced by different ischemic postcondiditoning methods: roles of phosphatidylinositol 3-Kinase-Akt and extracellular signal-regulated kinase. Anestheiol. 111, 1197-1205. https://doi.org/10.1097/ALN.0b013e3181bf1d93
  13. Kalimo, H., Agardh, C. D., Olsson, Y. and Siejo, B. K. (1980). Hypoglycemic brain injury: II. Electron microscopic findings in rat cerebral cortical neurons during profound insulininduced hypoglycemia and in the recovery period following glucose administration. Acta Neuropathol. (Berl) 50, 43-52. https://doi.org/10.1007/BF00688533
  14. Kim, J. B., Han, A. R., Park, E. Y., Kim, J. Y., Cho, W., Lee, J., Seo, E. K. and Lee, K. T. (2007). Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30, 2345-2351. https://doi.org/10.1248/bpb.30.2345
  15. Kim, S. J. and Han, Y. (2005). Insulin inhibits AMPA-induced neuronal damage via stimulation of protein kinase B (Akt). J. Neural. Transm. 112, 179-191. https://doi.org/10.1007/s00702-004-0163-6
  16. Liao, X. B., Zhou, X. M., Li, J. M., Yang, J. F., Tan, Z. P., Hu, Z. W., Liu, W., Lu, Y. and Yuan, L. Q. (2008). Taurine inhibits osteoblastic differentiation of vascular smooth muscle cells via the ERK pathway. Amino Acids 34, 525-530. https://doi.org/10.1007/s00726-007-0003-8
  17. Lin, Y. C., Huang, Y. C., Chen, S. C., Liaw, C. C., Kuo, S. C., Huang, L. J. and Gean, P. W. (2009). Neuroprotective effects of Ugonin K on hydrogen peroxide-induced cell death in human neuroblastoma SH-SY5Y cells. Neurochem. Res. 34, 923-930. https://doi.org/10.1007/s11064-008-9860-0
  18. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, S. H. V., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. (1993). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626-632. https://doi.org/10.1038/364626a0
  19. Louzada, P. R., Paula, L. A. C., Mendonca-silva, D. L., Noel, F., De Mello, F. G. and Ferreira, S. T. (2004). Taurine prevents the neurotoxicity of $\beta$-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer's disease and other neurological disorders. FASEB. J. 18, 511-518. https://doi.org/10.1096/fj.03-0739com
  20. Morales, M., Gonzalez-Mejia, M. E., Bernabe, A., Hernandez-Kelly, L. C. R. and Ortega, A. (2006). Glutamate activates Protein kinase B (PKB/Akt) through AMPA receptors in cultured Bergmann glia cells. Neurochem. Res. 31, 423-429. https://doi.org/10.1007/s11064-005-9034-2
  21. Park, S., Kim, H. and Kim, S. J. (2001). Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochem. Phamacol. 62, 1107-1111. https://doi.org/10.1016/S0006-2952(01)00741-9
  22. Park, S. H., Lee, H., Park, K. K., Kim, H. W. and Park, T. (2006). Taurine-responsive gones related to signal transduction as identified by cDNA microarray analyses of HepG2 cells. J. Medical Food 9, 33-41. https://doi.org/10.1089/jmf.2006.9.33
  23. Ruffels, J., Griffin, M. and Dickenson, J. M. (2004). Activation of ERK1.2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of ERK1/2 in $H_2O_2$-induced cell death. Eur. J. Pharmacol. 483, 163-173. https://doi.org/10.1016/j.ejphar.2003.10.032
  24. Saransaari, P. and Oja, S. S. (1999). Characteristics of ischemia-induced taurine release in the developing mouse hippocampus. Neuroscience 94, 949-954. https://doi.org/10.1016/S0306-4522(99)00384-X
  25. Saransarari, P. and Oja, S. S. (2000a). Involvement of metabotrophic glutamate receptors in ischemia-induced taurine release in the developing and adult hippocampus. Neurochem. Res. 25, 1067-1072. https://doi.org/10.1023/A:1007677610714
  26. Saransaari, P. and Oja, S. S. (2000b). Taurine and neural cell damage. Amino Acids 19, 509-526. https://doi.org/10.1007/s007260070003
  27. Saransaari, P. and Oja, S. S. (2007). Taurine release in mouse brain stem slices under cell-damaging conditions. Amino Acids 32, 439-446 https://doi.org/10.1007/s00726-006-0375-1
  28. Saransarari, P. and Oja, S. S. (2007). Taurine release in the developing and adult hippocampus. Neurochem. Res. 25, 1067-1072. https://doi.org/10.1023/A:1007677610714
  29. Sato, M., Hashimoto, H. and Kosaka, F. (1990). Histological changes of neuronal damage in vegetative dogs induced by 18 minutes Purkinje cells and hippocampal CA1 pyramidal cells. Acta Neuropathol. 80, 527-534. https://doi.org/10.1007/BF00294614
  30. Shen, J., Wu, Y., Xu, J. Y., Zhang, J., Sinclair, S. H., Yanoff, M., Xu, G., Li, W. and Xu, G. T. (2009). ERK- and Akt-dependent neuroprotectin by erythropoietin (Epo) against glyoxal-AGEs via modulation of Bcl-xL, Bax and BAD. Invest. Ophthalmol. Vis. Sci. in press.
  31. Simon, R. P., Griffiths, T., Evans, M. C., Swan, J. H. and Meldrum, B. S. (1984). Calcium overload in selectivity vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy stud in the rat. J. Cereb. Blood Flow Metab. 4, 350-361. https://doi.org/10.1038/jcbfm.1984.52
  32. Soderfeldt, B., Kalimo, H., Olsson, Y. and Siesjo, B. (1981). Pathogenesis of brain lesions caused by experimental epilepsy. Acta Neuropath. (Berl) 54, 219-231. https://doi.org/10.1007/BF00687745
  33. Son, H. Y., Kim, H. and Kwon, Y. H. (2007). Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. J. Nutr. Sci. Vitaminol. 53, 324-330. https://doi.org/10.3177/jnsv.53.324
  34. Spencer, J. P., Rice-Evans, C. and Williams, R. J. (2003). Modulation of pro-survival Akt/Protein kinase B and ERK1/2 signaling cascades by Quercetin and its in vivo metabolites underlie there action on neuronal viability. J. Biol. Chem. 278, 34783-34793. https://doi.org/10.1074/jbc.M305063200
  35. Strahlendorf, J., McMahon, K., Border, B., Barenberg, P., Miles, R. and Strahlendorf, H. (1999). AMPA-induced dark cell degeneration of cerebellar Purkinje neurons has characteristics of apoptosis. Neuroscie. Res. Commun. 25, 149-161. https://doi.org/10.1002/(SICI)1520-6769(199911/12)25:3<149::AID-NRC4>3.0.CO;2-S
  36. Strahlendorf, J. C. and Strahlendorf, H. K. (1999). Enduring changes in Purkinje cell electrophysiology following transient exposure to AMPA: correlates to dark cell degeneration. Neurosci. Res. 33, 155-162. https://doi.org/10.1016/S0168-0102(98)00126-6
  37. Vartanian, M. G., Cordon, J. J., Kupino, N. C., Schielke, G., Posner, A., Raswer, K. J., Wange, K. K. W. and Taylor, C. P. (1996). Phenytoin pretreatment prevents hypoxic-ischemic brain damage in neonatal rats. Dev. Brain Res. 95, 169-175. https://doi.org/10.1016/0165-3806(96)00073-9
  38. Vauzour, D., Vafeiadou, K., Rice-Evans, C., Williams, R. J. and Spencer, J. P. E. (2007). Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J. Neurochem. 103, 1355-1367. https://doi.org/10.1111/j.1471-4159.2007.04841.x
  39. Wu, J. Y., Lin, C. T., Johansen, F. F. and Liu, J. W. (1994). Taurine neurons in rat hippocampal formation are relatively inert to cerebral ischemia. Adv. Exp. Med. Biol. 359, 289-298. https://doi.org/10.1007/978-1-4899-1471-2_29
  40. Wu, X., Zhu, D., Jiang, X., Okagaki, P., Mearow, K., Zhu, G., McCall, S., Banaudha, K., Lipsky, R. H. and Marini, A. M. (2004). AMPA protects sulruted neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. J. Nerochem. 90, 807-818. https://doi.org/10.1111/j.1471-4159.2004.02526.x
  41. Zhang, L., Yu, H., Sun, Y., Lin, X., Chen, B., Tan, C., Cao, G. and Wang, Z. (2007). Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol. 564, 18-25. https://doi.org/10.1016/j.ejphar.2007.01.089
  42. Zhuang, S., Yan Y., Daubert, R. A., Han, J. and Schnellmann R. G. (2007). ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am. J. Renal Physiol. 292, 440-447.

Cited by

  1. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases vol.119, pp.8, 2012, https://doi.org/10.1007/s00702-011-0758-7
  2. p38-Targeted inhibition of interleukin-12 expression by ethanol extract fromCordyceps bassianain lipopolysaccharide-activated macrophages vol.33, pp.1, 2011, https://doi.org/10.3109/08923973.2010.482137
  3. Taurine exerts anti-osteoclastogenesis activity via inhibiting ROS generation, JNK phosphorylation and COX-2 expression in RAW264.7 cells vol.33, pp.6, 2013, https://doi.org/10.3109/10799893.2013.839999
  4. Amelioration of Repeated Restraint Stress-Induced Behavioral Deficits and Hippocampal Anomalies with Taurine Treatment in Mice vol.45, pp.4, 2010, https://doi.org/10.1007/s11064-019-02945-8