DOI QR코드

DOI QR Code

로 내 탈황을 위한 CaCO3 흡착제 입자의 분위기 기체와 체류 시간의 변화에 따른 특성

Characteristics of CaCO3 Sorbent Particles for the In-furnace Desulfurization

  • 이강수 (한국과학기술원 기계공학과) ;
  • 정재희 (한국과학기술연구원 환경기술연구단) ;
  • 길상인 (한국기계연구원 플라즈마자원연구실) ;
  • 이형근 (한국에너지기술연구원 온실가스연구단) ;
  • 김상수 (한국과학기술원 기계공학과)
  • Lee, Kang-Soo (Aerosol & Particle Technology Laboratory, Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jung, Jae-Hee (Global Environment Center, Korea Institute of Science and Technology (KIST)) ;
  • Keel, Sang-In (Environmental Systems Research Division, Korea Institute of Machinery and Materials (KIMM)) ;
  • Lee, Hyung-Keun (Greenhouse Gas Research Center, Korea Institute of Energy Research (KIER)) ;
  • Kim, Sang-Soo (Aerosol & Particle Technology Laboratory, Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 발행 : 2010.02.01

초록

추가적인 챔버를 필요로 하지 않는 로 내 탈황 기술은 순산소 연소 기술에 적용 가능할 것으로 기대되어 많은 연구가 진행중이다. 이때, 수 나노부터 수십 마이크로미터의 넓은 사이즈 분포를 가지는 $CaCO_3$ 입자가 흡착제로써 사용된다. 본 연구에서는 순산소 연소 시스템을 모사하는 랩스케일의 실험 장치를 구축하였다. $CaCO_3$ 흡착제 입자는 $1200^{\circ}C$로 설정된 고온 반응로에 각각 공기 분위기와 CO2 분위기에서 노출되게 된다. 이때 고온 반응로에서의 체류 시간을 0.33 ~ 1.46 초로 변화시켜 가면서 분석을 수행하였다. 흡착제 입자는 고온 반응로의 전단과 후단에서 각각 포집되어 주사형 이동도 입자계수기, X-선 회절장치, 열중량 분석기, 주사전자현미경 등을 사용하여 정성적/정량적으로 분석하였다. 결과적으로, 고온 반응로에서의 체류 시간과 분위기 기체성분이 흡착제 입자의 하소 반응률, 반응 메커니즘 등에 영향을 미침을 확인하였다.

The in-furnace desulfurization technique is applied to the $O_2/CO_2$ combustion system for the carbon capture and storage (CCS) process because this combustion system does not need an additional chamber for the desulfurization. $CaCO_3$ sorbent particles, which have a wide range in size from a few nanometers to several tens of micrometers, are used for this process. In this study, an experimental system which can simulate the $O_2/CO_2$ combustion system was developed. $CaCO_3$ sorbent particles were exposed to the high temperature reactor at $1200^{\circ}C$ with various residence times (0.33-1.46 s) in air and $CO_2$ atmospheric conditions, respectively. The sorbent particles were then sampled at the inlet and outlet of the reactor and analyzed qualitatively/quantitatively using SMPS, XRD, TGA, and SEM. The results showed that the residence time and atmospheric condition in a high temperature reactor can affect the characteristics of the $CaCO_3$ sorbent particles used in the in-furnace desulfurization technique, such as the calcination rate and reaction mechanism.

키워드

참고문헌

  1. Figueroa, J. D., Fout, T., Plasynski, S., Mcllvried, H. and Srivastava, R. D., 2008, "Advances in $CO_2$ Capture Technology - The U.S. Department of Energy's Carbon Sequestration Program," Int. J. Greenh. Gas Con., Vol. 2, No. 1, pp. 9-20. https://doi.org/10.1016/S1750-5836(07)00094-1
  2. Buhre, B. J. P., Elliott, L. K., Sheng, C. D., Gupta, R. P. and Wall, T. F., 2005, "Oxy-Fuel Combustion Technology for Coal-fired Power Generation," Prog. Energ. Combust., Vol. 31, No. 4, pp. 283-307. https://doi.org/10.1016/j.pecs.2005.07.001
  3. Liu, H. and Okazaki, K., 2003, "Simultaneous Easy $CO_2$ Recovery and Drastic Reduction of $SO_X$ and $NO_X$ in $O_2/CO_2$ Coal Combustion with Heat Recirculation," Fuel, Vol. 82, No. 11, pp. 1427-1436. https://doi.org/10.1016/S0016-2361(03)00067-X
  4. Okazaki, K. and Ando, T., 1997, "$NO_X$ Reduction Mechanism in Coal Combustion with Recycled $CO_2$," Energy, Vol. 22, No. 2/3, pp. 207-215. https://doi.org/10.1016/S0360-5442(96)00133-8
  5. Liu, H., Katagiri, S., Kaneko, U. and Okazaki, K., 2000, "Sulfation Behavior of Limestone under High $CO_2$ Concentration in $O_2/CO_2$Combustion," Fuel, Vol. 79, No. 8, pp. 945-953. https://doi.org/10.1016/S0016-2361(99)00212-4
  6. Chen, C. M. and Zhao, C. S., 2006, "Mechanism of Highly Efficient In-Furnace Desulfurization by Limestone under $O_2/CO_2$ Coal Combustion Atmosphere," Ind. Eng. Chem. Res., Vol. 45, No. 14, pp. 5078-5085. https://doi.org/10.1021/ie060196x
  7. Hu, G., Dam-Johanson, K., Wedel, S. and Hansen, J. P., 2007, "Direct Sulfation of Limestone," AIChe J., Vol. 53, No. 4, pp. 948-960. https://doi.org/10.1002/aic.11129
  8. Fuertes, A. B., Velasco, G., Fernandez, M. J. and Alvarez, T., 1994, "Analysis of the Direct Sulfation of Calcium Carbonate," Thermochim. Acta, Vol. 242, pp. 161-172. https://doi.org/10.1016/0040-6031(94)85018-6
  9. Tullin, C. and Ljungstrom, E., 1989, "Reaction between Calcium Carbonate and Sulfur Dioxide," Energ. Fuel., Vol. 3, No. 3, pp. 284-287. https://doi.org/10.1021/ef00015a003
  10. Mahuli, S. K., Agnihotri, R., Jadhav, R., Chauk, S. and Fan, L. S., 1999, "Combined Calcination, Sintering, and Sulfation Model for $CaCO_3-SO_2$ Reaction," AIChE J., Vol. 45, No. 2, pp. 367-382. https://doi.org/10.1002/aic.690450216
  11. Rahmani, M. and Sohrabi, M., 2006, "Direct Sulfation of Calcium Carbonate Using the Variable Diffusivity Approach," Chem. Eng. Technol., Vol. 29, No. 12, pp. 1496-1501. https://doi.org/10.1002/ceat.200600144
  12. Chen, C., Zhao, C., Liang, C. and Pang, K., 2007, "Calcination and Sintering Characteristics of Limestone under $O_2/CO_2$ Combustion Atmosphere," Fuel Process. Technol., Vol. 88, No. 2, pp. 171-178. https://doi.org/10.1016/j.fuproc.2006.03.003
  13. Garcia-Labiano, F., Abad, A., De Diego, L. F., Gayan, P. and Adanez, J., 2002, "Calcination of Calcium-based Sorbents at Pressure in a Broad Range of $CO_2$ Concentrations," Chem. Eng. Sci., Vol. 57, No. 13, pp. 2381-2393. https://doi.org/10.1016/S0009-2509(02)00137-9
  14. Szekely, J., Evans, J. W. and Sohn, H. Y., 1976, Gas-Solid Reactions, Academic Press, 1st ed., pp. 12-77.

피인용 문헌

  1. Desulfurization Characteristics of Domestic Limestones through Simultaneous Calcination and Desulfurization Reaction vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1071