DOI QR코드

DOI QR Code

A Kr öger-Vink Compatible Notation for Defects in Inherently Defective Sublattices

  • Norby, Truls (University of Oslo, Department of Chemistry)
  • Published : 2010.01.31

Abstract

Traditional Kr$\ddot{o}$ger-Vink (K-V) notation defines sites in ionic crystals as interstitial or belonging to host ions. It enables description and calculations of combinations of native and foreign defects, including dopants and substituents. However, some materials exhibit inherently disordered partial occupancy of ions and vacancies, or partial occupancy of two types of ions. For instance, the high temperature disordered phases of $Bi_2O_3$, $Ba_2In_2O_5$, $La_2Mo_2O_9$, mayenite $Ca_{12}Al_{14}O_{33}$, AgI, and $CsHSO_4$ are all good ionic conductors and thus obviously contain charged point defects. But traditional K-V notation cannot account for a charge compensating defect in each case, without resorting to terms like "100% substitution" or "Frenkel disorder". the former arbitrary and awkward and the latter inappropriate. Instead, a K-V compatible nomenclature in which the partially occupied site is defined as the perfect site, has been proposed. I here introduce it thoroughly and provide a number of examples.

Keywords

References

  1. F. A. Kroger and H. J. Vink, “Relations Between Concentrations of Imperfections in Crystalline Solids,” pp. 307-435, Vol. 3, Solid State Physics (eds F. Seitz and D. Turnbull) Academic Press, New York, 1956.
  2. F. A. Kroger, “The Chemistry of Imperfect Crystals”, pp. 1039, North-Holland, Amsterdam, 1964.
  3. R. Strandbakke, C. Kongshaug, R. Haugsrud, and T. Norby, “High-Temperature Hydration and Conductivity of Mayenite, $Ca_{12}Al_{14}O_3$,” J. Phys. Chem. C, 113 [20] 8938-44 (2009). https://doi.org/10.1021/jp9009299
  4. R. Bredesen and T. Norby, “On Phase Relations, Transport Properties and Defect Structure in Mixed Conducting $SrFe_{1.5-x}Co_xO_z$,” Solid State Ionics, 129 [1-4] 285-97 (2000). https://doi.org/10.1016/S0167-2738(99)00333-1
  5. R. Bredesen, T. Norby, A. Bardal, and V. Lynum, “Phase Relations, Chemical Diffusion and Electrical Conductivity in Pure and Doped $Sr_4Fe_6O_{13}$ Mixed Conductor Materials,” Solid State Ionics, 135 [1-4] 687-97 (2000). https://doi.org/10.1016/S0167-2738(00)00382-9
  6. R. Haugsrud, “Defects and Transport Properties in $Ln_6WO_{12}$ (Ln = La, Nd, Gd, Er),” Solid State Ionics, 178 [7-10] 555-60 (2007). https://doi.org/10.1016/j.ssi.2007.01.004
  7. S. Noirault, S. Celerier, O. Joubert, M.T. Caldes, and Y. Piffard, “Incorporation of Water and Fast Proton Conduction in the Inherently Oxygen-deficient Compound $La_{26}O_{27}(BO_3)_8$,” Adv. Mater., 19 [6] 867-70 (2007). https://doi.org/10.1002/adma.200602033
  8. L. W. Strock, “Kristallstruktur des Hochtemperatur-Jodsilbers $\alpha$-AgJ,” Z. Phys. Chem., B25 441-59 (1934).
  9. L. W. Strock, “Erganzung und Berichtigung zu: "Kristallstruktur des Hochtemperatur-Jodsilbers $\alpha$-AgJ,” Z. Phys. Chem., B31 132-36 (1935).
  10. P. Rahlfs, “Uber die Kubischen Hochtemperaturemodifikationen der Sulfide, Selenide und Telluride des Silbers und des Einwertigen Kupfers,” Z. Phys. Chem., B31 157-94 (1936).
  11. N. Sharova, H. Fjellvag, and T. Norby, “Structure, Defect Chemistry, and Proton Conductivity in Nominally Srdoped $Ba_3La(PO_4)_3$,” Solid State Ionics, 180 [4-5] 338-42 (2009). https://doi.org/10.1016/j.ssi.2009.01.002

Cited by

  1. : A Competitive Mixed Electron–Proton Conductor for Gas Separation Membrane Applications vol.24, pp.20, 2012, https://doi.org/10.1021/cm301723a
  2. ): A Combined Experimental and Computational Study vol.118, pp.33, 2014, https://doi.org/10.1021/jp5048437
  3. ] vol.118, pp.6, 2014, https://doi.org/10.1021/jp409581n
  4. . A review vol.2, pp.32, 2014, https://doi.org/10.1039/C4TA00546E
  5. with M = In or Sc vol.54, pp.6, 2015, https://doi.org/10.1021/ic503006u
  6. vol.18, pp.42, 2016, https://doi.org/10.1039/C6CP05756J
  7. (BGLC) vol.5, pp.30, 2017, https://doi.org/10.1039/C7TA02659E
  8. ceramics vol.5, pp.11, 2018, https://doi.org/10.1088/2053-1591/aadf5e
  9. -based potential electron–proton conductors under dry and wet redox conditions vol.6, pp.2, 2019, https://doi.org/10.1039/C8QI01142G
  10. Thermoelectric properties of indium-doped zinc oxide sintered in an argon atmosphere vol.30, pp.5, 2019, https://doi.org/10.1007/s10854-019-00775-6