DOI QR코드

DOI QR Code

Adsorptive Immobilization of Acetylcholine Esterase on Octadecyl Substituted Porous Silica: Optical Bio-analysis of Carbaryl

  • Norouzy, Amir (Department of Biochemistry and Biophysics, Babol University of Medical Sciences) ;
  • Habibi-Rezaei, Mehran (School of Biology, College of Science, University of Tehran) ;
  • Qujeq, Durdi (Department of Biochemistry and Biophysics, Babol University of Medical Sciences) ;
  • Vatani, Maryam (School of Biology, College of Science, University of Tehran) ;
  • Badiei, Alireza (School of Chemistry, College of Science, University Tehran)
  • Published : 2010.01.20

Abstract

A sensory element against carbaryl, as a widely used pesticide was prepared based on adsorbed acetylcholine esterase (AChE) from Torpedo california. Octadecyl was substituted on macro-porous silica, confirmed by infra-red (IR) spectroscopy and quantitatively estimated through thermo-gravimetric analysis (TGA). Immobilization of the enzyme was achieved by adsorption on this support. Activity of the immobilization product was measured as a function of the loaded enzyme concentration, and maximum binding capacity of the support was estimated to be 43.18 nmol.mg-1. The immobilized preparations were stable for more than two months at storage conditions and showed consistency in continuous operations. Possible application of the immobilized AChE for quantitative analysis of carbaryl is proposed in this study.

Keywords

References

  1. Nunes, G. S.; Skladal, P.; Yamanaka, H.; Barcelo, D. Analytica Chimica Acta 1998, 362, 59. https://doi.org/10.1016/S0003-2670(97)00547-3
  2. La Rosa, C.; Pariente, F.; Hernandez, L.; Lorenzo, E. Analytica Chimica Acta 1994, 295, 273. https://doi.org/10.1016/0003-2670(94)80232-7
  3. Andrescu, S.; Avramescu, A.; Bala, C.; Magearu, V.; Marty, J. L. Anal. Bioanal.Chem. 2002, 374, 39. https://doi.org/10.1007/s00216-002-1442-4
  4. Andreescu, S.; Barthelmebs, L.; Marty, J. L. Analytica Chimica Acta 2002, 464, 171. https://doi.org/10.1016/S0003-2670(02)00518-4
  5. Flores, F.; Artigas, J.; Marty, J. L.; Valdes, F. Anal. Bioanal. Chem. 2003, 376(4), 476. https://doi.org/10.1007/s00216-003-1925-y
  6. Andreescu, S.; Marty, J. L. Biomolecular Engineering 2006, 23(1), 1. https://doi.org/10.1016/j.bioeng.2006.01.001
  7. Blevins, R. D.; Dunn, W. C. J. Agric. Food Chem. 1975, 23(3), 377. https://doi.org/10.1021/jf60199a027
  8. Houghton, P. J.; Rena, Y.; Howes, M. J. Nat. Prod. Rep. 2006, 23, 181. https://doi.org/10.1039/b508966m
  9. Granmer, M. F. Neurotoxicology 1986, 7, 247.
  10. Wills, J. H.; Jamson, E.; Coulston, F. Clinic. Toxicol. 1968, 1, 265. https://doi.org/10.3109/15563656808990580
  11. Mavrikou, S.; Flampouri, K.; Moschopoulou, G.; Mangana, O.; Michaelides, A.; Kintzios, S. Sensors 2008, 8(4), 2818. https://doi.org/10.3390/s8042818
  12. Ashok, K.; Singh, D. S. Comp. Biochem. Physiol. 1998, 119, 97. https://doi.org/10.1016/S1095-6433(97)00402-9
  13. Santhoshkumar, P.; Karanth, S.; Shivanandappa, T. Fundam. Appl. Toxicol. 1996, 32, 23. https://doi.org/10.1006/faat.1996.0103
  14. Yazal, J. E.; Rao, S. N.; Mehl, A.; Slikker, W. J. Toxicol. Sci. 2001, 63, 223. https://doi.org/10.1093/toxsci/63.2.223
  15. Suwansa-ard, S.; Kanatharana, P.; Asawatreratanakul, P.; Limsakul, C.; Wongkittisuksa, B.; Thavarungkul, P. Biosens. Bioelectron. 2005, 21, 445. https://doi.org/10.1016/j.bios.2004.11.005
  16. Skladal, P.; Fiala, M.; Krejci, J. Intern. J. Environ. Anal. Chem. 1996, 65, 139. https://doi.org/10.1080/03067319608045549
  17. Kumar, J.; Kumar Jha, S.; D'Souza, S. F. Biosensors and Bioelectronics 2006, 21, 2100. https://doi.org/10.1016/j.bios.2005.10.012
  18. Lee, H. S.; Kim, Y. A.; Chao, Y. A.; Lee, Y. T. Chemosphere 2002, 46, 571. https://doi.org/10.1016/S0045-6535(01)00005-4
  19. Wink, T.; Van Zuilen, S. J.; Bult, A.; Bennekom, W. P. Analyst 1997, 122, 43R. https://doi.org/10.1039/a606964i
  20. Gooding, J. J.; Hibbert, D. B. Trends Anal. Chem. 1999, 18, 525. https://doi.org/10.1016/S0165-9936(99)00133-8
  21. Pauliukaite, R.; Schoenleber, M.; Vadgama, P.; Brett, C. M. Biocatal. Biotransform. 2004, 22, 145. https://doi.org/10.1080/10242420412331283314
  22. Sotiropoulou, S.; Chaniotakis, N. A. Biomaterials 2005, 26, 6771. https://doi.org/10.1016/j.biomaterials.2005.04.040
  23. Joshi, K. A.; Tang, J.; Haddon, R.; Wang, J.; Chen, W.; Mulchaldani, A. Electroanalysis 2005, 7, 54.
  24. Lin, Y. H.; Lu, F.; Wang, J. Electroanalysis 2004, 16, 145. https://doi.org/10.1002/elan.200302933
  25. Ellman, G. L.; Coutney, K. D.; Valentino, A.; Featherstone, R. M. Biochem. Pharmacol. 1961, 7, 88. https://doi.org/10.1016/0006-2952(61)90145-9
  26. Sherma, J. J. Environ. Sci. Health B 2007, 42, 429. https://doi.org/10.1080/03601230701316440
  27. Bartolini, M.; Cavrini, V.; Andrisano, V. Analytical Biochemistry 2005, 342, 163. https://doi.org/10.1016/j.ab.2005.03.028
  28. Barshan-Tashnizi, M.; Ahmadian, Sh.; Niknam, K.; Torabi, S. F.; Ranaei-Siadat, S. O. Biotechnol. Appl. Biochem. 2009, 52, 257. https://doi.org/10.1042/BA20080005
  29. Nemat-Gorgani, M.; Karimian, K. Eur. J. Biochem. 1982, 123, 601.
  30. Habibi-Rezaei, M.; Nemat-Gorgani, M. Appl. Biochem. Biotechnol. 2002, 97, 79. https://doi.org/10.1385/ABAB:97:2:079
  31. Duncan, A. C.; Sefton, M. V.; Brash, J. L. Biomaterials 1997, 18, 1585. https://doi.org/10.1016/S0142-9612(97)00100-2
  32. Hofstee, B. H. J. Biochem. Biophys. Res. Commun. 1973, 50, 751. https://doi.org/10.1016/0006-291X(73)91308-9
  33. Hjerten, S. J. Chromatogr. 1973, 87, 325. https://doi.org/10.1016/S0021-9673(01)91733-9
  34. Azari, F.; Hosseinkhani, S.; Nemat-Gorgani, M. Appl. Biochem. Biotechnol. 2001, 94, 265. https://doi.org/10.1385/ABAB:94:3:265
  35. Yongnian, N.; Dongxia, C.; Serge, K. Anal. Chim. Acta 2007, 588, 131. https://doi.org/10.1016/j.aca.2007.01.073
  36. Andreescu, S.; Barthelmebs, L.; Marty, J. L. Anal. Chem. Acta 2002, 464, 171. https://doi.org/10.1016/S0003-2670(02)00518-4
  37. Valdes-Ramirez, G.; Cortina, M.; Ramirez-Silva, M. T.; Marty, J. L. J. Anal. Bioanal. Chem. 2008, 392, 699. https://doi.org/10.1007/s00216-008-2290-7
  38. Abad, J. M.; Pariente, F.; Hernandez, L.; Abruna, H. D.; Lorenzo, E. Anal. Chem. 1998, 70, 2848. https://doi.org/10.1021/ac971374m

Cited by

  1. Effects of dichlorvos and carbaryl on the activity of free and immobilized acetylcholinesterase vol.28, pp.4, 2012, https://doi.org/10.1177/0748233711410907
  2. Synthesis of a thin-layer gelatin nanofiber mat for cultivating retinal cell vol.33, pp.4, 2018, https://doi.org/10.1177/0883911518776337
  3. Dioxane enhanced immobilization of urease on alkyl modified nano-porous silica using reversible denaturation approach vol.70, pp.1, 2011, https://doi.org/10.1016/j.molcatb.2011.01.014