DOI QR코드

DOI QR Code

Simultaneous Detection of Cd (II), Pb (II), Cu (II), and Hg (II) Ions in Dye Waste Water Using a Boron Doped Diamond Electrode with DPASV

  • Published : 2010.01.20

Abstract

The simultaneous detection of Cd (II), Pb (II), Cu (II), and Hg (II) ions in aqueous medium using a BDD electrode with DPASV is described. XPS was used to characterize the chemical states of trace metal ions deposited on the BDD electrode surface. Experimental parameters that affect response, such as pH, deposition time, deposition potential, and pulse amplitude were carefully optimized. The detection limits for Cd (II), Pb (II), Cu (II), and Hg (II) ions were 3.5 ppb, 2.0 ppb, 0.1 ppb and 0.7 ppb, respectively. The application of the BDD electrode on the electrochemical pretreatment for the simultaneous metal detection in the dye waste water was also investigated.

Keywords

References

  1. Goyer, R. A. Toxicology, The Basic Science of Poisons; fifth ed.; Klaassen, C. D., Ed.; McGraw-Hill: New York, 1996; p 691.
  2. Lead in Drinking Water, http://www.epa.gov/safewater/lead/leadfacts.html, July 2005.
  3. Hwang, T. J.; Jiang, S. J. J. Anal. At. Spectrosc. 1996, 11, 353. https://doi.org/10.1039/ja9961100353
  4. Liu, H. W.; Jiang, S. J.; Liu, S. H. Spectrochim. Acta Part B 1999, 54, 1367. https://doi.org/10.1016/S0584-8547(99)00081-6
  5. Das-Ak Chakraborty, R.; Cervera, M. L.; Delaguardia, M. Mikrochim. Acta 1996, 122, 209. https://doi.org/10.1007/BF01245784
  6. When, J.; Cassidy, R. M. Anal. Chem. 1996, 68, 1047. https://doi.org/10.1021/ac9508715
  7. McGaw, E. A.; Swain, G. M. Anal. Chim. Acta 2006, 575, 180. https://doi.org/10.1016/j.aca.2006.05.094
  8. Wang, S. P.; Forzani, E. S.; Tao, N. J. Anal. Chem. 2007, 79, 4427. https://doi.org/10.1021/ac0621773
  9. Florence, T. M. J. Electroanal. Chem. Interfac. Electrochem. 1970, 27, 273. https://doi.org/10.1016/S0022-0728(70)80189-9
  10. Dong, S.; Wang, Y. Talanta 1988, 35, 819. https://doi.org/10.1016/0039-9140(88)80193-0
  11. Rahman, Md. A.; Won, M. S.; Shim, Y. B. Anal. Chem. 2003, 75, 1123. https://doi.org/10.1021/ac0262917
  12. Nolan, M. A. Anal. Chem. 1999, 71, 3567. https://doi.org/10.1021/ac990126i
  13. Jena, B. K.; Retna, R. C. Anal. Chem. 2008, 80, 4836. https://doi.org/10.1021/ac071064w
  14. Bonfil, Y.; Kirowa-Eisner, E. Anal. Chim. Acta 2002, 457, 285. https://doi.org/10.1016/S0003-2670(02)00016-8
  15. Wang, J.; Lu, J.; Hocevar, S. B.; Farias, P. A. M.; Ogoreve, B. Anal. Chem. 2000, 72, 3218. https://doi.org/10.1021/ac000108x
  16. Pauliukaite, R.; Hocevar, S. B.; Ogorevc, B.; Wang, J. Electroanalysis 2004, 16, 719. https://doi.org/10.1002/elan.200302783
  17. Manivannan, A.; Tryk, D. A.; Fujishima, A. Electrochem. Solid State Lett. 1999, 2, 455. https://doi.org/10.1149/1.1390869
  18. Prado, C.; Wilkins, S. J.; Marken, F.; Compton, R. G. Electroanalysis 2002, 14, 262. https://doi.org/10.1002/1521-4109(200202)14:4<262::AID-ELAN262>3.0.CO;2-D
  19. Manivannan, A.; Kawasaki, R.; Tryk, D. A.; Fujishima, A. Electrochimica 2004, 49, 3313. https://doi.org/10.1016/j.electacta.2004.03.004
  20. Tall, O. E.; Jaffrezic-Renault, N.; Sigaud, M.; Vittori, O. Electroanalysis 2007, 19, 1152. https://doi.org/10.1002/elan.200603834
  21. www.lasurface.com/database
  22. Yoon, J. H.; Muthuraman, G.; Yang, J. E.; Shim, Y. B.; Won, M. S. Electroanalysis 2007, 19, 1160. https://doi.org/10.1002/elan.200703835

Cited by

  1. Electrochemical Boron-Doped Diamond Film Microcells Micromachined with Femtosecond Laser: Application to the Determination of Water Framework Directive Metals vol.84, pp.11, 2012, https://doi.org/10.1021/ac3003598
  2. Amperometric Simultaneous Measurement of Copper and Cobalt Ions with Polythiophene Incorporating Pendant Terpyridine Groups vol.53, pp.17, 2014, https://doi.org/10.1080/03602559.2014.935405
  3. vol.6, pp.1, 2014, https://doi.org/10.1021/am404816e
  4. A gold electrode modified with amino-modified reduced graphene oxide, ion specific DNA and DNAzyme for dual electrochemical determination of Pb(II) and Hg(II) vol.182, pp.13-14, 2015, https://doi.org/10.1007/s00604-015-1569-6
  5. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis vol.5, pp.2, 2015, https://doi.org/10.3390/bios5020241
  6. Electrochemical Determination of Cadmium, Lead, and Nickel Using a Polyphenol–Polyvinyl Chloride—Boron-Doped Diamond Electrode vol.51, pp.3, 2018, https://doi.org/10.1080/00032719.2017.1310879
  7. Simultaneous Detection of Trace Cadmium(II) and Lead(II) Using an Unmodified Edge Plane Pyrolytic Graphite Electrode vol.23, pp.5, 2011, https://doi.org/10.1002/elan.201000721
  8. Long-life Heavy Metal Ions Sensor Based on Graphene Oxide-anchored Conducting Polymer vol.29, pp.2, 2016, https://doi.org/10.1002/elan.201600494
  9. A Versatile Carbon Fiber Cloth-supported Au Nanodendrite Sensor for Simultaneous Determination of Cu(II), Pb(II) and Hg(II) vol.30, pp.10, 2018, https://doi.org/10.1002/elan.201800332
  10. in aqueous solution and test strips vol.143, pp.20, 2018, https://doi.org/10.1039/C8AN00940F
  11. Effectiveness study of sensor based on modified cavity microelectrode by Algerian humic acid-polyaniline composites using square wave voltammetry vol.169, pp.None, 2010, https://doi.org/10.1016/j.snb.2012.04.085
  12. Copper ion luminescence on/off sensing by a quinoline-appended ruthenium(II)-polypyridyl complex in aqueous media vol.1202, pp.None, 2010, https://doi.org/10.1016/j.molstruc.2019.127242
  13. Simultaneous Complexation and Microextraction Using Verbenone Hydrazone as the Ligand with Slotted Quartz Tube-Flame Atomic Absorption Spectrometry (FAAS) for the Sensitive Determination of Copper vol.54, pp.14, 2010, https://doi.org/10.1080/00032719.2020.1866594