DOI QR코드

DOI QR Code

Detection of Small Neutral Carbohydrates Using Various Supporting Materials in Laser Desorption/Ionization Mass Spectrometry

  • Yang, Hyo-Jik (Department of Chemistry, Chungnam National University) ;
  • Lee, Ae-Ra (Department of Chemistry, Chungnam National University) ;
  • Lee, Myung-Ki (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Woong (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Jeong-Kwon (Department of Chemistry, Chungnam National University)
  • Published : 2010.01.20

Abstract

A comprehensive comparative investigation of small carbohydrates in laser desorption ionization was performed on supporting materials composed of sodiated 2,5-dihydroxybenzoic acid (DHB), carbon nanotubes, an ionic liquid matrix of DHB-pyridine, a binary matrix of DHB-aminopyrazine, zinc oxide nanoparticles, and gold nanoparticles. The abundance of $[M+Na]^+$ ions, where M is glucose or sucrose, was compared for each supporting material. The highest sensitivity for both glucose and sucrose, with a detection limit of 3 pmol, was observed with carbon nanotubes. Both carbon nanotubes and the ionic liquid matrix exhibited the highest reproducibility.

Keywords

References

  1. Chunyan, H.; Xiuli, M.; Shiping, F.; Zhiqiang, L.; Shuying, L.; Fengrui, S.; Juzheng, L. Rapid Commun. Mass Spectrom. 1998, 12, 345. https://doi.org/10.1002/(SICI)1097-0231(19980415)12:7<345::AID-RCM165>3.0.CO;2-B
  2. Grant, G. A.; Frison, S. L.; Yeung, J.; Vasanthan, T.; Sporns, P. J. Agr. Food Chem. 2003, 51, 6137. https://doi.org/10.1021/jf034118l
  3. Ren, S. F.; Zhang, L.; Cheng, Z. H.; Guo, Y. L. J. Am. Soc. Mass Spectr. 2005, 16, 333. https://doi.org/10.1016/j.jasms.2004.11.017
  4. Su, C. L.; Tseng, W. L. Anal. Chem. 2007, 79, 1626. https://doi.org/10.1021/ac061747w
  5. McLean, J. A.; Stumpo, K. A.; Russell, D. H. J. Am. Chem. Soc. 2005, 127, 5304. https://doi.org/10.1021/ja043907w
  6. Chiu, T. C.; Chang, L. C.; Chiang, C. K.; Chang, H. T. J. Am. Soc. Mass Spectrom. 2008, 19, 1343. https://doi.org/10.1016/j.jasms.2008.06.006
  7. Watanabe, T.; Kawasaki, H.; Yonezawa, T.; Arakawa, R. J. Mass Spectrom. 2008, 43, 1063. https://doi.org/10.1002/jms.1385
  8. Wei, J.; Buriak, J. M.; Siuzdak, G. Nature 1999, 399, 243. https://doi.org/10.1038/20400
  9. Zhang, J.; Wang, H. Y.; Guo, Y. L. Chinese J. Chem. 2005, 23, 185. https://doi.org/10.1002/cjoc.200590185
  10. Xu, S. Y.; Li, Y. F.; Zou, H. F.; Qiu, J. S.; Guo, Z.; Guo, B. C. Anal. Chem. 2003, 75, 6191. https://doi.org/10.1021/ac0345695
  11. Wang, C. H.; Li, J.; Yao, S. J.; Guo, Y. L.; Xia, X. H. Anal. Chim. Acta 2007, 604, 158. https://doi.org/10.1016/j.aca.2007.10.001
  12. Zabet-Moghaddam, M.; Heinzle, E.; Tholey, A. Rapid Commun. Mass Spectrom. 2004, 18, 141. https://doi.org/10.1002/rcm.1293
  13. Tholey, A.; Heinzle, E. Anal. Bioanal. Chem. 2006, 386, 24. https://doi.org/10.1007/s00216-006-0600-5
  14. Armstrong, D. W.; Zhang, L. K.; He, L.; Gross, M. L. Anal. Chem. 2001, 73, 3679. https://doi.org/10.1021/ac010259f
  15. Crank, J. A.; Armstrong, D. W. J. Am. Soc. Mass Spectrom. 2009, 20, 1790. https://doi.org/10.1016/j.jasms.2009.05.020
  16. Guo, Z.; He, L. Anal. Bioanal. Chem. 2007, 387, 1939. https://doi.org/10.1007/s00216-006-1100-3
  17. Hashir, M. A.; Stecher, G.; Bonn, G. K. Rapid Commun. Mass Spectrom. 2008, 22, 2185. https://doi.org/10.1002/rcm.3602
  18. Hashir, M. A.; Stecher, G.; Bakry, R.; Kasemsook, S.; Blassnig, B.; Feuerstein, I.; Abel, G.; Popp, M.; Bobleter, O.; Bonn, G. K. Rapid Commun. Mass Spectrom. 2007, 21, 2759. https://doi.org/10.1002/rcm.3147
  19. Hashir, M. A.; Stecher, G.; Mayr, S.; Bonn, G. K. Int. J. Mass Spectrom. 2009, 279, 15. https://doi.org/10.1016/j.ijms.2008.09.014
  20. Lee, H. S.; Yun, C. H.; Kim, H. M.; Lee, C. J. J. Phys. Chem. C 2007, 111, 18882. https://doi.org/10.1021/jp075062r
  21. Shen, L.; Bao, N.; Yanagisawa, K.; Domen, K.; Gupta, A.; Grimes, C. A. Nanotechnology 2006, 17, 5117. https://doi.org/10.1088/0957-4484/17/20/013
  22. Wu, H. P.; Su, C. L.; Chang, H. C.; Tseng, W. L. Anal. Chem. 2007, 79, 6215. https://doi.org/10.1021/ac070847e
  23. Mordkovich, V. Z.; Baxendale, M.; Yoshimura, S.; Chang, R. P. H. Carbon 1996, 34, 1301. https://doi.org/10.1016/0008-6223(96)82802-8
  24. Eletskii, A. V. Phys. Usp. 2004, 47, 1119. https://doi.org/10.1070/PU2004v047n11ABEH002017
  25. Nuutinen, J. M.; Purmonen, M.; Ratilainen, J.; Rissanen, K.; Vainiotalo, P. Rapid Commun. Mass Spectrom. 2001, 15, 1374. https://doi.org/10.1002/rcm.383
  26. Mohr, M. D.; Bornsen, K. O.; Widmer, H. M. Rapid Commun. Mass Spectrom. 1995, 9, 809. https://doi.org/10.1002/rcm.1290090919
  27. Koichi, T.; Hiroaki, W.; Yutaka, I.; Satoshi, A.; Yoshikazu, Y.; Tamio, Y.; Matsuo, T. Rapid Commun. Mass Spectrom. 1988, 2, 151. https://doi.org/10.1002/rcm.1290020802

Cited by

  1. N-(1-Naphthyl) Ethylenediamine Dinitrate: A New Matrix for Negative Ion MALDI-TOF MS Analysis of Small Molecules vol.23, pp.9, 2012, https://doi.org/10.1007/s13361-012-0421-z
  2. Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry vol.402, pp.2, 2012, https://doi.org/10.1007/s00216-011-5120-2
  3. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2009-2010 vol.34, pp.3, 2015, https://doi.org/10.1002/mas.21411
  4. species during MALDI and dopant-free APPI MS analysis of novel antineoplastic curcumin analogues vol.49, pp.11, 2014, https://doi.org/10.1002/jms.3434
  5. Quantitative Analysis of Free Fatty Acids in Human Serum Using Biexciton Auger Recombination in Cadmium Telluride Nanoparticles Loaded on Zeolite vol.86, pp.19, 2014, https://doi.org/10.1021/ac5018869
  6. Sample Preparation for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry vol.6, pp.2, 2015, https://doi.org/10.5478/MSL.2015.6.2.27
  7. Carbon nanowalls: a new versatile graphene based interface for the laser desorption/ionization-mass spectrometry detection of small compounds in real samples vol.9, pp.27, 2017, https://doi.org/10.1039/C7NR01069A
  8. MALDI-MS Analysis of Sucrose Using a Charcoal Matrix with Different Cationization Agents vol.39, pp.6, 2018, https://doi.org/10.1002/bkcs.11466
  9. Current literature in mass spectrometry vol.45, pp.6, 2010, https://doi.org/10.1002/jms.1653
  10. Characterization of unknown compounds from stainless steel plates in matrix-assisted laser desorption/ionization mass spectrometry vol.21, pp.12, 2010, https://doi.org/10.1016/j.jasms.2010.08.010
  11. Analysis of Arginine, Glucose, Sucrose, and Polyethylene Glycols using a Wood Charcoal Matrix for MALDI-MS vol.1, pp.1, 2010, https://doi.org/10.5478/msl.2010.1.1.033
  12. Analysis of cancer cell lipids using matrix‐assisted laser desorption/ionization 15‐T Fourier transform ion cyclotron resonance mass spectrometry vol.26, pp.6, 2010, https://doi.org/10.1002/rcm.6140
  13. Analysis of oligosaccharides in beer using MALDI-TOF-MS vol.134, pp.3, 2010, https://doi.org/10.1016/j.foodchem.2012.03.069
  14. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Mechanistic Studies and Methods for Improving the Structural Identification of Carbohydrates vol.6, pp.3, 2010, https://doi.org/10.5702/massspectrometry.s0072
  15. Characterization of an Unconventional MALDI-MS Peak from DHB/pyridine Ionic Liquid Matrices vol.11, pp.1, 2020, https://doi.org/10.5478/msl.2020.11.1.6
  16. Imaging of Neurotransmitters and Small Molecules in Brain Tissues Using Laser Desorption/Ionization Mass Spectrometry Assisted with Zinc Oxide Nanoparticles vol.32, pp.4, 2010, https://doi.org/10.1021/jasms.1c00021