DOI QR코드

DOI QR Code

Efficient Preparation of 3-Fluoropyrrole Derivatives

  • Published : 2010.01.20

Abstract

Noble N-substituted-3-fluoropyrroles derivatives were prepared from new precursor via ring formation. The addition reaction of ethyl iododifluoroacetate to vinyl trimethylsilane under the Cu(0) catalyst resulted in the formation of ethyl-2,2-difluoro-4-iodo-4-(trimethylsilyl)butanolate, which reacted with diisobutylaluminium hydride at $-30^{\circ}C$ to yield 2,2-diflouro-4-iodo-4-(trimethylsilyl)butanal. Finally, a series of N-substituted-3-fluoropyrrole derivatives were synthesized by the reaction of 2,2-diflouro-4-iodo-4-(trimethylsilyl)butanal with $NH_4OH$ or primary amines followed by reaction with KF solution.

Keywords

References

  1. Guernion, N. J. L.; Hayes, W. Curr. Org. Chem. 2004, 8, 637-651. https://doi.org/10.2174/1385272043370771
  2. Pringle, J. M.; Ngamna, O.; Chen, J.; Wallace, Gordon. G.; Maria, F.; Douglas R, M. F. Synth. Methods 2006, 156, 979. https://doi.org/10.1016/j.synthmet.2006.06.009
  3. Fried, J.; Hallinan, E. A; Szwedo, M. J., Jr. J. Am. Chem. Soc. 1984, 106, 3871. https://doi.org/10.1021/ja00325a033
  4. Thaisrivongs, S.; Pals, D. T.; Kati, W. M.; Tuner, S. R.; Thomasco, L. M. J. Med. Chem. 1985, 28, 1555. https://doi.org/10.1021/jm00149a002
  5. Filler, R. Chemtech. 1974, 4, 752.
  6. Welch, J. T. Tetrahedron 1987, 43, 3123. https://doi.org/10.1016/S0040-4020(01)90286-8
  7. Marquez, V. E.; Tseng, C. K. H.; Mitsuya, H.; Aoki, S.; Kelley, J. A.; Ford, H., Jr.; Roth, J. S.; Broder, S.; Johns, D. G.; Driscoll, J. S. J. Med. Chem. 1990, 33, 978. https://doi.org/10.1021/jm00165a015
  8. Yamazaki, T.; Welch, J. T.; Plummer, J. S.; Gimi, R. H.; Tetrahedron Lett. 1991, 32, 4267. https://doi.org/10.1016/S0040-4039(00)92145-2
  9. Davis, F. A.; Han, W. Tetrahedron Lett. 1992, 33, 1153. https://doi.org/10.1016/S0040-4039(00)91883-5
  10. Siddiqui, M. A.; Marquez, V. E.; Driscoll, J. S.; Barchi, J. J., Jr. Tetrahedron Lett. 1994, 35, 3263. https://doi.org/10.1016/S0040-4039(00)76880-8
  11. Welch, J. T. ACS Symposium Series, 456: Selective Fluorination in Organic and Bioorganic Chemistry; American Chemical Society; Washington, D. C., 1991; p 215.
  12. Welch, J. T.; Eswarakhrisnan, S. Fluorine in Bioorganic Chemistry; Wiley: New York, 1991; p 261
  13. Biochemical Aspects of Fluorine Chemistry; Filler, R., Kobayashi, Y., Eds.; Kodasha Ltd.: Tokyo, Japan, 1982; p 246.
  14. Gorb, L. G.; Morozova, I. M.; Belen'kii, L. I.; Abronin, I. A. Izv. Akad. Nauk SSSR. Ser. Khim. 1983, 4, 828.
  15. Zhu, B. Y.; Su, T.; Li, W.; Goldman, E. A.; Zhang, P.; Jia, Z. J.; Scarborough, R. M. PCT Int. Appl. WO2002026734 A1 20020404, 2002.
  16. De Laszlo, S. E.; Liverton, N. J.; Ponticello, G. S.; Selnick, H. G.; Mantlo, N. B. U. S. Patent, US5837719 A19981117, 1998.
  17. Onda, H.; Toi, H.; Aoyama, Y.; Ogoshi, H. Tetrahedron Lett. 1985, 26, 4221. https://doi.org/10.1016/S0040-4039(00)98997-4
  18. Eli Lilly and Company, Fr. Demande 1 549 829; 1968: Chem. Abstr. 1970, 72, 121357s.
  19. Gozzo, F. C.; Ifa, D. R.; Eberlin, M. N. J. Org. Chem. 2000, 65, 3920. https://doi.org/10.1021/jo9917442
  20. Cerichelli, G.; Crestoni, M. E.; Fornarini, S. Gazz. Chim. Ital. 1990, 120, 749.
  21. De Rosa, M. J. Org. Chem. 1982, 47, 1008. https://doi.org/10.1021/jo00345a023
  22. Bray, B. L.; Mathies, P. H.; Naef, R.; Solas, D. R.; Tidwell, T. T.; Artis, D. R.; Muchowski, J. M. Org. Chem. 1990, 55, 6317-6328. https://doi.org/10.1021/jo00313a019
  23. Buhr, G. Chem. Ber. 1973, 106, 3544. https://doi.org/10.1002/cber.19731061111
  24. Barnes, K. D.; Hu, Y.; Hunt, D. A. Synthetic Communications 1994, 25, 1749.
  25. Dvornikova, E.; Bechcicka, M.; Kamienka-Trela, K.; Krowczynski, A. J. Fluorine Chem. 2003, 124, 159. https://doi.org/10.1016/j.jfluchem.2003.07.001
  26. Leroy, J.; Porhiel, E.; Bondon, A. Tetrahedron 2002, 58, 6713. https://doi.org/10.1016/S0040-4020(02)00677-4
  27. Lee, Y. H.; Park, K. J.; Cho, I. H.; Chai, K. Y. J. Korean Chem. Soc. 1998, 42, 335.
  28. Kim, S. G.; Jun, C. S.; Kwak, K. C.; Park, K.; Chai, K. Y. Bull. Kor. Chem. Soc. 2007, 28(12), 2324. https://doi.org/10.5012/bkcs.2007.28.12.2324
  29. Yu, Y. Z.; Burton, D. J. J. Org. Chem. 1991, 56, 5125. https://doi.org/10.1021/jo00017a026
  30. AI-Hassam, M. I.; Miller, R. B. Synth. Commun. 2001, 31, 3641. https://doi.org/10.1081/SCC-100107013
  31. Onda, H.; Toi, H.; Aoyama, Y.; Ogoshi, H. Tetrahedron Lett. 1985, 26, 4221. https://doi.org/10.1016/S0040-4039(00)98997-4
  32. Qiu, Z.-M.; Burton, D. J. Tetrahedron Lett. 1994, 35, 4319. https://doi.org/10.1016/S0040-4039(00)73343-0
  33. Surmont, R.; Verniest, G.; Colpaert, F.; Macdonald, G.; Thuring, J. W.; Deroose, F.; De Kimpe, N. J. Org. Chem. 2009, 74, 1377. https://doi.org/10.1021/jo802272n

Cited by

  1. From Olefination to Alkylation: In-Situ Halogenation of Julia–Kocienski Intermediates Leading to Formal Nucleophilic Iodo- and Bromodifluoromethylation of Carbonyl Compounds vol.134, pp.13, 2012, https://doi.org/10.1021/ja301601b
  2. A novel reaction of gem-difluorocyclopropyl ketones with nitriles leading to 2-fluoropyrroles vol.49, pp.84, 2013, https://doi.org/10.1039/c3cc45456h
  3. ChemInform Abstract: Efficient Preparation of 3-Fluoropyrrole Derivatives. vol.41, pp.22, 2010, https://doi.org/10.1002/chin.201022093