DOI QR코드

DOI QR Code

Selective Oxidation of Olefins Catalyzed by Polymer-anchored Nickel(II) Complex in Water Medium

  • Received : 2010.06.24
  • Accepted : 2010.10.19
  • Published : 2010.12.20

Abstract

Selective oxidation of olefins has been carried out in water medium with tert-butylhydroperoxide (TBHP, 70% aqueous) as an oxidant using polymer-anchored Ni(II) complex as a catalyst. Several parameters were varied to optimize the reaction conditions. Under the optimized reaction conditions olefins gave selectively allylic oxidation products. The present polymer anchored Ni(II) complex can be recycled five times without any appreciable loss in catalytic activity.

Keywords

References

  1. Clark, J. H.; Tavener, S. J. Org. Process Res. Dev. 2007, 11, 149. https://doi.org/10.1021/op060160g
  2. Li, C. J. Green Chem. 2008, 10, 151. https://doi.org/10.1039/b800137p
  3. Azizi, N.; Aryanasab, F.; Torkiyan, L.; Ziyaei, A.; Saidi, M. R. J.Org. Chem. 2006, 71, 3634. https://doi.org/10.1021/jo060048g
  4. Horvath, I. T. Green Chem. 2008, 10, 1024. https://doi.org/10.1039/b812804a
  5. Pirrung, M. C. Chem. Eur. J. 2006, 12, 1312. https://doi.org/10.1002/chem.200500959
  6. Shapiro, N.; Vigalok, A. Angew. Chem., Int. Ed. 2008, 47, 2849. https://doi.org/10.1002/anie.200705347
  7. Starks, C. M. J. Am. Chem. Soc.1971, 93,195. https://doi.org/10.1021/ja00730a033
  8. Regen, S. L. J. Am. Chem. Soc. 1976, 98, 6270 https://doi.org/10.1021/ja00436a034
  9. Meunier, M. Chem. Rev. 1992, 92, 1411. https://doi.org/10.1021/cr00014a008
  10. Sherrington, D. C., Hodnett, B. K., Keybett, A. P., Clark, J. H., Smith, K., Eds.; Supported Reagents and Catalyst in Chemistry; Royal Society of Chemistry: Cambridge, 1998; p 220.
  11. Islam, M.; Mondal, P.; Mukherjee, S.; Mobarak, M.; Roy, A. S.; Mondal, S.; Sarkar, S. J. Chem. Technol. Biotechnol. 2010, 85, 460.
  12. Sherrington, D. C. Pure Appl. Chem. 1988, 60, 401. https://doi.org/10.1351/pac198860030401
  13. Annis, D. A.; Jacobson, E. N. J. Am. Chem. Soc. 1999, 121, 4147. https://doi.org/10.1021/ja984410n
  14. Canali, L.; Sherrington, D. C. Chem. Soc. Rev. 1999, 28, 85. https://doi.org/10.1039/a806483k
  15. Sherrington, D. C. Catal. Today 2000, 57, 87 https://doi.org/10.1016/S0920-5861(99)00311-9
  16. Islam, M.; Mondal, P.; Mondal, S.; Mukherjee, S.; Roy, A. S.; Mobarak, M.; Paul, M. J. Inorg. Organomet. Polym. 2010, 20, 87. https://doi.org/10.1007/s10904-009-9310-8
  17. Valodkar, V. B.; Tembe, G. L.; Ravindranathan, M.; Ram, R. N.;Rama, H. S. J. Mol. Catal A: Chem. 2004, 208, 21. https://doi.org/10.1016/j.molcata.2003.07.001
  18. Mukherjee, S.; Samanta, S.; Bhaumik, A.; Roy, B. C. Appl. Catal. B Environ. 2006, 68, 12. https://doi.org/10.1016/j.apcatb.2006.07.015
  19. Mukherjee, S.; Samanta, S.; Roy, B. C.; Bhaumik, A. Appl. Catal.A Gen. 2006, 301, 79. https://doi.org/10.1016/j.apcata.2005.11.015
  20. Sohrabi, H.; Esmaeeli, M.; Farzaneh, F.; Ghandi, M. J. Inclusion Phenomena and Macrocyclic Chem. 2006, 54, 23. https://doi.org/10.1007/s10847-005-2874-1
  21. Sheldon, R. A.; Kochi, J. K. Metal Complex Catalyzed Oxidation of Organic Compounds; Academic Press: New York, 1981.
  22. Cainelli, G.; Cardillo, G. Chromium Oxidation in Organic Chemistry; Springer-Verlag: New York, 1984.
  23. Kroschwitz, J. I.; Othmer, K. Encyclopedia of Chemical Technology; Wiley-Interscience: New York, 1992.
  24. Ullmann, F. Ullmanns Encyclopedia of Industrial Chemistry;Wiley-VCH: Verlag, Weinheim, Germany, 2003.
  25. Gokak, D. T.; Kamath, B. V.; Ram, R. N. J. Appl. Polym. Sci. 1988,35, 1523. https://doi.org/10.1002/app.1988.070350610
  26. Angelino, M. D.; Laibinis, P. E. Macromolecules 1998, 31, 7581. https://doi.org/10.1021/ma9804803
  27. Antony, R.; Tembe, G. L.; Ravindranathana, M.; Ram, R. N. Eur.Polym. J. 2000, 36, 1579. https://doi.org/10.1016/S0014-3057(99)00223-2
  28. Bellamy, L. J., Ed.; Infra-red Spectra of Complex Molecules; Chapman and Hall: London, 1975.
  29. Gauli, K.; Ram, R. N.; Soni, H. P. J. Mol. Catal. A: Chem. 2005, 242, 161. https://doi.org/10.1016/j.molcata.2005.07.014
  30. Colchoubian, H.; Waltz, W. L.; Quail, J. W. Can. J. Chem. 1999, 77, 37.
  31. Sacconi, L. Trans. Met. Chem. 1968, 61, 943.
  32. Sen, R.; Bhunia, S.; Mal, D.; Koner, S.; Miyashita, Y.; Okamoto, K. Langmuir 2009, 25, 13667. https://doi.org/10.1021/la902945x

Cited by

  1. ChemInform Abstract: Selective Oxidation of Olefins Catalyzed by Polymer-Anchored Nickel(II) Complex in Water Medium. vol.42, pp.18, 2011, https://doi.org/10.1002/chin.201118035
  2. Preparation of Nickel Nanoparticles in Spherical Polyelectrolyte Brush Nanoreactor and Their Catalytic Activity vol.50, pp.24, 2011, https://doi.org/10.1021/ie2017306
  3. DABCO-Catalyzed Green Synthesis of 2-Hydroxy-1,4-diones via Direct Aldol Reaction of Arylglyoxals in Water vol.57, pp.2, 2013, https://doi.org/10.5012/jkcs.2013.57.2.252
  4. Facile route fabrication of nickel based mesoporous carbons with high catalytic performance towards 4-nitrophenol reduction vol.16, pp.4, 2014, https://doi.org/10.1039/c3gc42121j
  5. Preparation of Au/Ag multilayers via layer-by-layer self-assembly in spherical polyelectrolyte brushes and their catalytic activity vol.33, pp.10, 2015, https://doi.org/10.1007/s10118-015-1700-5
  6. Liquid-Phase Catalytic Oxidation of Styrene by a Fiber-Supported Copper(II) Complex with High Catalytic Performance vol.1033-1034, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.1033-1034.61
  7. Catalytic Oxidation Processes for the Upgrading of Terpenes: State-of-the-Art and Future Trends vol.9, pp.11, 2010, https://doi.org/10.3390/catal9110893
  8. Selective Allylic Oxidation of Terpenic Olefins Using Co-Ag Supported on SiO2 as a Novel, Efficient, and Recyclable Catalyst vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1241952