DOI QR코드

DOI QR Code

Identification of Dinitrotoluene Selective Peptides by Phage Display Cloning

  • Received : 2010.09.24
  • Accepted : 2010.10.15
  • Published : 2010.12.20

Abstract

Biomolecules specific to explosives can be exploited as chemical sensors. Peptides specific to immobilized dinitrotoluene (DNT) were identified using a phage display library. A derivative of DNT that contained an extended amine group, 4-(2,4-dinitrophenyl)butan-1-amine, was synthesized and immobilized using a self-assembled monolayer surface on gold. Filamentous M13 phages displaying random sequences of 12-mer peptides specific to the immobilized DNT-derivate were isolated from the M13 phage library by biopanning. A common peptide sequence was identified from the isolated phages and the synthesized peptides showed selective binding to DNT. When the peptide was immobilized on a quartz crystal microbalance (QCM) chip, it showed a binding signal to DNT, while toluene barely showed significant binding to the QCM chip. These results demonstrate that peptides screened by biopanning against immobilized DNT can be useful for quick and accurate detection of DNT.

Keywords

References

  1. Halasz, A.; Groom, C.; Zhou, E.; Paquet, L.; Beaulieu, C.; Deschamps, S.; Corriveau, A.; Thiboutot, S.; Ampleman,G.; Dubois, C.; Hawari, J. J. Chromatogr. A 2002, 963, 411-418. https://doi.org/10.1016/S0021-9673(02)00553-8
  2. Borch, T.; Gerlach, R. J. Chromatogr. A 2004, 1022, 83-94. https://doi.org/10.1016/j.chroma.2003.09.067
  3. Stringer, R. C.; Gangopadhyay, S.; Grant, S. A. Anal. Chem. 2010, 82, 4015-4019. https://doi.org/10.1021/ac902838c
  4. Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H.; Ray, P. C. J. Am. Chem. Soc. 2009, 131, 13806-13812. https://doi.org/10.1021/ja905134d
  5. Ehrentreich-Forster, E.; Orgel, D.; Krause-Griep, A.; Cech, B.; Erdmann, V. A.; Bier, F.; Scheller, F. W.; Rimmele, M. Anal. Bioanal. Chem. 2008, 391, 1793-1800. https://doi.org/10.1007/s00216-008-2150-5
  6. Wilson, R.; Clavering, C.; Hutchison, A. Analyst 2003, 128, 480-485. https://doi.org/10.1039/b301942j
  7. Nagatomo, K.; Kawaguchi, T.; Miura, N.; Toko, K.; Matsumoto, K. Talanta 2009, 79, 1142-1148. https://doi.org/10.1016/j.talanta.2009.02.018
  8. Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864- 11873. https://doi.org/10.1021/ja982293q
  9. Jaworski, J. W.; Raorane, D.; Huh, J. H.; Majumdar, A.; Lee, S.-W. Langmuir 2008, 24, 4938-4943. https://doi.org/10.1021/la7035289
  10. Rodi, D. J.; Makowski, L. Cur. Opin. Biotech. 1999, 10, 87-93. https://doi.org/10.1016/S0958-1669(99)80016-0
  11. Cabrita, J. F.; Abrantes, L. M.; Viana, A. S. Electrochimica Acta 2005, 50, 2117-2124. https://doi.org/10.1016/j.electacta.2004.09.019
  12. Thompson, G.; Owen, D.; Chalk, P. A.; Lowe, P. N. Biochemistry 1998, 37, 7885-7891. https://doi.org/10.1021/bi980140+
  13. Sauerbrey, G. Z. Phys. 1959, 155, 206-222. https://doi.org/10.1007/BF01337937

Cited by

  1. Array-Based Rational Design of Short Peptide Probe-Derived from an Anti-TNT Monoclonal Antibody vol.19, pp.10, 2017, https://doi.org/10.1021/acscombsci.7b00035
  2. Gold Binding Peptide Identified from Microfluidic Biopanning: An Experimental and Molecular Dynamics Study vol.35, pp.2, 2010, https://doi.org/10.1021/acs.langmuir.8b02563
  3. Peptide Screening from a Phage Display Library for Benzaldehyde Recognition vol.48, pp.8, 2010, https://doi.org/10.1246/cl.190318
  4. Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review vol.20, pp.6, 2010, https://doi.org/10.3390/s20061803