DOI QR코드

DOI QR Code

New 7-Hydroxycoumarin-Based Fluorescent Chemosensors for Zn(II) and Cd(II)

  • Swamy, K.M.K. (Department of Chemistry and Nano Science (BK21) and Department of Bioinspired Science (WCU), Ewha Womans University) ;
  • Kim, Min-Jung (Department of Chemistry and Nano Science (BK21) and Department of Bioinspired Science (WCU), Ewha Womans University) ;
  • Jeon, Hye-Ryeong (Department of Chemistry and Nano Science (BK21) and Department of Bioinspired Science (WCU), Ewha Womans University) ;
  • Jung, Ji-Young (Department of Chemistry and Nano Science (BK21) and Department of Bioinspired Science (WCU), Ewha Womans University) ;
  • Yoon, Ju-Young (Department of Chemistry and Nano Science (BK21) and Department of Bioinspired Science (WCU), Ewha Womans University)
  • Received : 2010.09.03
  • Accepted : 2010.10.04
  • Published : 2010.12.20

Abstract

Five new 4- or 8-substituted-7-hydroxycoumarin derivatives (1-5) were synthesized as fluorescent sensors for metal ions. Fluorescent changes and selectivity for metal ions were compared based on the introduction of different ligands and/or testing with different substitution positions of 7-hydroxycoumarin in aqueous solution. Especially, probes 2, 3 and 5 displayed large fluorescence enhancements with $Zn^{2+}$ and $Cd^{2+}$. Probes 2 and 3 showed moderate selectivity for $Zn^{2+}$ over $Cd^{2+}$. On the other hand, probe 4 showed large fluorescence quenching effects upon the addition of $Ag^+$ and $Hg^{2+}$.

Keywords

References

  1. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T. A.; Huxley, T. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  2. Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 39, 127. https://doi.org/10.1039/b907368j
  3. Martinez-Manez, R.; Sancanon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  4. Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094. https://doi.org/10.1016/j.ccr.2006.08.017
  5. Kim, S. K.; Kim, H. N.; Xiaoru, Z.; Lee, H. N.; Lee, H. N.; Soh, J. H.; Swamy, K. M. K.; Yoon, J. Supramolecular Chem. 2007, 19, 221. https://doi.org/10.1080/10610270701275091
  6. Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780. https://doi.org/10.1021/cr068046j
  7. Xu, Z.; Kim, S. K.; Yoon, J. Chem. Soc. Rev. 2010, 39, 1457. https://doi.org/10.1039/b918937h
  8. Chen, X.; Zhou, Y.; Peng, X.; Yoon, J. Chem. Soc. Rev. 2010, 39, 2120. https://doi.org/10.1039/b925092a
  9. Kim, S. K.; Singh, N. J.; Kwon, J.; Hwang, I.-C.; Park, S. J.; Kim, K. S.; Yoon, J. Tetrahedron 2006, 62, 6065. https://doi.org/10.1016/j.tet.2006.03.107
  10. Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551. https://doi.org/10.1016/j.tet.2005.05.043
  11. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3. https://doi.org/10.1016/S0010-8545(00)00246-0
  12. Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Coord. Chem. Rev. 2000, 205, 59. https://doi.org/10.1016/S0010-8545(00)00242-3
  13. Kim, H.; Lee, M.; Kim, H.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465. https://doi.org/10.1039/b802497a
  14. Bush, A. I.; Pettingell, W. H.; Multhaup, G.; Paradis, M.; Vonsattel, J-P.; Gusella, J. F.; Beyreuther, K.; Masters, C. L.; Tanzi, R. E. Science 1994, 265, 1464. https://doi.org/10.1126/science.8073293
  15. Koh, J. Y.; Suh, S. W.; Gwag, B. J.; He, Y. Y.; Hsu, C. Y.; Choi, D. W. Science 1996, 272, 1013. https://doi.org/10.1126/science.272.5264.1013
  16. Frederickson, C. J.; Koh, J. Y.; Bush, A. I. Nat. Rev. Neurosci. 2005, 6, 449. https://doi.org/10.1038/nrn1671
  17. Xu, Z.; Yoon, J.; Spring, D. R. Chem. Soc. Rev. 2010, 39, 1996. https://doi.org/10.1039/b916287a
  18. Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517. https://doi.org/10.1021/cr078203u
  19. Nolan, E. M.; Lippard, S. J. Acc. Chem. Res. 2009, 42, 193. https://doi.org/10.1021/ar8001409
  20. Dai, Z.; Canary, J. W. New J. Chem. 2007, 31, 1708. https://doi.org/10.1039/b710803f
  21. Jiang, P.; Guo, J. Coord. Chem. Rev. 2004, 248, 205. https://doi.org/10.1016/j.cct.2003.10.013
  22. Carol, P.; Sreejith, S.; Ajayaghosh, A. Chem. Asian J. 2007, 2, 338. https://doi.org/10.1002/asia.200600370
  23. Lim, N. C.; Freake, H. C.; Brückner, C. Chem. Eur. J. 2005, 11, 38. https://doi.org/10.1002/chem.200400599
  24. Xu, Z.; Baek, K.-H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.; Yoon, J. J. Am. Chem. Soc. 2010, 132, 601. https://doi.org/10.1021/ja907334j
  25. Wong, B. A.; Friedle, S.; Lippard, S. J. J. Am. Chem. Soc. 2009, 131, 7142. https://doi.org/10.1021/ja900980u
  26. Kiyose, K.; Kojima, H.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 6548. https://doi.org/10.1021/ja060399c
  27. Qian, F.; Zhang, C.; Zhang, Y.; He, W.; Gao, X.; Hu, P.; Guo, Z. J. Am. Chem. Soc. 2009, 131, 1460. https://doi.org/10.1021/ja806489y
  28. Kim, H.M.; Seo, M. S.; An, M. J.; Hong, J. H.; Tian, Y. S.; Choi, J. H.; Kwon, O.; Lee, K. J.; Cho, B. R. Angew. Chem. Int. Ed. 2008, 47, 5167. https://doi.org/10.1002/anie.200800929
  29. Jiang, W.; Fu, Q.; Fan, H.; Wang, W. Chem. Commun. 2008, 259.
  30. Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. Org. Biomol. Chem. 2005, 1387.
  31. Parkesh, R.; Lee, T. C.; Gunnlaugsson, T. Org. Biomol. Chem. 2007, 310.
  32. Joshi, B.; Cho, P. W.-M.; Kim, J. S.; Yoon, J.; Lee, K.-H. Bioorg. Med. Chem. Lett. 2007, 17, 6425. https://doi.org/10.1016/j.bmcl.2007.10.008
  33. Park, M. S.; Swamy, K. M. K.; Lee, Y. J.; Lee, H. N.; Jang, Y. J.; Moon, Y. H.; Yoon, J. Tetrahedron Lett. 2006, 47, 8129. https://doi.org/10.1016/j.tetlet.2006.09.029
  34. Lee, J. W.; Jung, H. S.; Kwon, P. S.; Kim, J. W.; Bartsch, R. A.; Kim, Y.; Kim, S.-J.; Kim, J. S. Org. Lett. 2008, 10, 3801. https://doi.org/10.1021/ol801482n
  35. Xu, Z.; Kim, G.-H.; Han, S. J.; Jou, M. J.; Lee, C.; Shin, I.; Yoon, J. Tetrahedron 2009, 65, 2307. https://doi.org/10.1016/j.tet.2009.01.035
  36. Du, J.; Fan, J.; Peng, X.; Li, H.; Sun, S. Sensors and Actuator B 2009, 144, 337.
  37. Zhou, Y.; Kim, H. N.; Yoon, J. Bioorg. Med. Chem. Lett. 2010, 20, 125. https://doi.org/10.1016/j.bmcl.2009.11.028
  38. Lu, X.; Zhu, W.; Xie, Y.; Li, X.; Gao, Y.; Li, F.; Tian, H. Chem. Eur J. 2010, 16, 8355. https://doi.org/10.1002/chem.201000461
  39. Goddard, J. P.; Raymond, J. L. Trends Biotechnol. 2004, 22, 363.
  40. Katerinopoulos, H. E. Curr. Pharm. Des. 2004, 10, 3835. https://doi.org/10.2174/1381612043382666
  41. Mizukami, S.; Okada, S.; Kimura, S.; Kikuchi, K. Inorg. Chem. 2009, 48, 7630. https://doi.org/10.1021/ic900247r
  42. Lim, N. C.; Schuster, J. V.; Porto, M. C.; Tanudra, M. A.; Yao, L.; Freake, H. C.; Bruckner, C. Inorg. Chem. 2005, 44, 2018. https://doi.org/10.1021/ic048905r
  43. Kim, G.-J.; Kim, H.-J. Tetrahedron Lett. 2010, 51, 185. https://doi.org/10.1016/j.tetlet.2009.10.113
  44. Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 13447. https://doi.org/10.1021/ja072432g
  45. Do, J. H.; Kim, H. N.; Yoon, J.; Kim, J. S.; Kim, H.-J. Org. Lett. 2010, 12, 932. https://doi.org/10.1021/ol902860f
  46. Dakanali, M.; Roussakis, E.; Kay, A. R.; Katerinopoulos, H. E. Tetrahedron Lett. 2005, 45, 4193.
  47. Jang, Y. J.; Moon, B.-S.; Park, M. S.; Kang, B.-G.; Kwon, J. Y.; Hong, J. S. J.; Yoon, Y. J.; Lee, K. D.; Yoon, J. Tetrahedron Lett. 2006, 47, 2707. https://doi.org/10.1016/j.tetlet.2006.02.087
  48. Kulatilleke, C. P.; de Silva, S. A.; Eliav, Y. Polyhedron 2006, 25, 2593. https://doi.org/10.1016/j.poly.2006.03.020
  49. Zhang, L.; Dong, S.; Zhu, L. Chem. Commun. 2007, 1891.
  50. Kim, M. J.; Swamy, K. M. K.; Lee, K. M.; Jagdale, A. R.; Kim, Y.; Kim, S.-J.; Yoo, K. H.; Yoon, J. Chem. Commun. 2009, 7215.
  51. Jung, H. S.; Kwon, P. S.; Lee, J. W.; Kim, J. I.; Hong, C. S.; Kim, J. W.; Yan, S.; Lee, J. Y.; Lee, J. H.; Joo, T.; Kim, J. S. J. Am. Chem. Soc. 2009, 131, 2008. https://doi.org/10.1021/ja808611d
  52. Cho, Y. S.; Ahn, K. H. Tetrahedon Lett. 2010, 51, 3852. https://doi.org/10.1016/j.tetlet.2010.05.081
  53. Chen, X.; Kang, S.; Kim, M. J.; Kim, J.; Kim, Y. S.; Kim, H.; Chi, B.; Kim, S.-J.; Lee, J. Y.; Yoon, J. Angew. Chem. Int. Ed. 2010, 49, 1422. https://doi.org/10.1002/anie.200905041
  54. Xu, Z.; Singh, N. J.; Lim, J.; Pan, J.; Kim, H. N.; Park, S.; Kim, K. S.; Yoon, J. J. Am. Chem. Soc. 2009, 131, 15528. https://doi.org/10.1021/ja906855a
  55. Jou, M. J.; Chen, X.; Swamy, K. M. K.; Kim, H. N.; Kim, H.-J.; Lee, S.-g.; Yoon, J. Chem. Commun. 2009, 7218.
  56. Chen, X.; Lee, J.; Jou, M. J.; Kim, J.-M.; Yoon, J. Chem. Commun. 2009, 3434.
  57. Xu, Z.; Kim, S.; Lee, K.-H.; Yoon, J. Tetrahedron Lett. 2007, 48, 3797. https://doi.org/10.1016/j.tetlet.2007.03.159
  58. Jun, E. J.; Won, H. N.; Kim, J. S.; Lee, K.-H.; Yoon, J. Tetrahedron Lett. 2006, 47, 4577. https://doi.org/10.1016/j.tetlet.2006.04.143
  59. Choi, M.; Kim, M.; Lee, K. D.; Han, K.-N.; Yoon, I.-A.; Chung, H.-J.; Yoon, J. Org. Lett. 2001, 3, 3455. https://doi.org/10.1021/ol016400o
  60. 4-Methylumbelliferone (7-hydroxy-4-methyl coumarine) as a standard in 0.1 M NaOH solution. Chen, R. F. Anal. Lett. 1968, 1, 423. https://doi.org/10.1080/00032716808051147
  61. Swamy, K. M. K.; Kim, H. N.; Soh, J. H.; Kim, Y.; Kim, S.-J.; Yoon, J. Chem. Commun. 2009, 1234.
  62. Chatterjee, A.; Santra, M.; Won, N.; Kim, S.; Kim, J. K.; Kim, S. B.; Ahn, K. H. J. Am. Chem. Soc. 2009, 131, 2040. https://doi.org/10.1021/ja807230c
  63. Kang, J.; Choi, M.; Lee, E. Y.; Yoon, J. J. Org. Chem. 2002, 67, 4384. https://doi.org/10.1021/jo020123x
  64. Samamoto, T.; Ojida, A.; Hamachi, I. Chem. Commun. 2009, 141.
  65. Kim, S. K.; Lee, D. H.; Hong, J.-I.; Yoon, J. Acc. Chem. Res. 2009, 42, 23. https://doi.org/10.1021/ar800003f
  66. Atilgan, S.; Ozdemir, T.; Akkaya, E. U. Org. Lett. 2008, 10, 4065. https://doi.org/10.1021/ol801554t
  67. Chen, X.; Jou, M. J.; Yoon, J. Org. Lett. 2009, 11, 2181. https://doi.org/10.1021/ol9004849
  68. Ojida, A.; Mito-oka, Y.; Sada, K.; Hamachi, I. J. Am. Chem. Soc. 2004, 126, 2454. https://doi.org/10.1021/ja038277x
  69. Lee, D. H.; Kim, S. Y.; Hong, J.-I. Angew. Chem. Int. Ed. Engl. 2004, 43, 4777 https://doi.org/10.1002/anie.200453914
  70. Lee, H. N.; Swamy, K. M. K.; Kim, S. K.; Kwon, J.-Y.; Kim, Y.; Kim, S.-J.; Yoon, Y. J.; Yoon, J. Org. Lett. 2007, 9, 243. https://doi.org/10.1021/ol062685z
  71. Jang, Y. J.; Jun, E. J.; Lee, Y. J.; Kim, Y. S.; Kim, J. S.; Yoon, J. J. Org. Chem. 2005, 70, 9603. https://doi.org/10.1021/jo0509657
  72. Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, Tao J. Am. Chem. Soc. 2007, 129, 1500. https://doi.org/10.1021/ja0643319
  73. Huang, X.; Guo, Z.; Zhu, W.; Xie, Y.; Tian, H. Chem. Commun. 2008, 5143.

Cited by

  1. ChemInform Abstract: New 7-Hydroxycoumarin-Based Fluorescent Chemosensors for Zn(II) and Cd(II). vol.42, pp.15, 2011, https://doi.org/10.1002/chin.201115148
  2. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions vol.41, pp.8, 2012, https://doi.org/10.1039/C1CS15245A
  3. Mechanism for Different Fluorescence Response of a Coumarin–Amide–Dipicolylamine Linkage to Zn(II) and Cd(II) in Water vol.117, pp.7, 2013, https://doi.org/10.1021/jp3111315
  4. Easily accessible and highly selective “Turn-on” fluorescent sensor for imaging cadmium in living cells vol.29, pp.4, 2013, https://doi.org/10.1007/s40242-013-3126-3
  5. A highly selective fluorescent probe for cadmium ions in aqueous solution and living cells vol.50, pp.19, 2014, https://doi.org/10.1039/C3CC48668K
  6. in aqueous solution and living cells vol.5, pp.52, 2015, https://doi.org/10.1039/C5RA05080D
  7. Fluorescent and Colorimetric Chemosensors for Anions, Metal Ions, Reactive Oxygen Species, Biothiols, and Gases vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10926
  8. Cation-Selective and Anion-Controlled Fluorogenic Behaviors of a Benzothiazole-Attached Macrocycle That Correlate with Structural Coordination Modes vol.55, pp.15, 2016, https://doi.org/10.1021/acs.inorgchem.6b00690
  9. A Quinoline-Based Ratiometric and Reversible Fluorescent Probe for Cadmium Imaging in Living Cells vol.64, pp.1, 2016, https://doi.org/10.1248/cpb.c15-00579
  10. Detection of Zinc(II) by a Fluorescence Chemosensor Based on Benzofuran in Aqueous Media and Live Cells pp.12295949, 2018, https://doi.org/10.1002/bkcs.11608
  11. ]pyrimidine; Syntheses, Photophysical Properties, and Investigation of Protonation Ability vol.2018, pp.43, 2018, https://doi.org/10.1002/ejoc.201800594
  12. Structural effects of ditopic azoprobe–cyclodextrin complexes on the selectivity of guest-induced supramolecular chirality pp.1364-548X, 2018, https://doi.org/10.1039/C8CC02242A
  13. An 1,3,4-oxadiazole-based OFF–ON fluorescent chemosensor for Zn2+ in aqueous solution and imaging application in living cells vol.41, pp.35, 2010, https://doi.org/10.1039/c2dt30852e
  14. Recent progress on fluorescent chemosensors for metal ions vol.381, pp.None, 2010, https://doi.org/10.1016/j.ica.2011.09.011
  15. 3,9-Dithia-6-azaundecane-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile vol.33, pp.10, 2010, https://doi.org/10.5012/bkcs.2012.33.10.3465
  16. Simple naphthalimide-based fluorescent sensor for highly sensitive and selective detection of Cd2+ and Cu2+ in aqueous solution and living cells vol.42, pp.5, 2010, https://doi.org/10.1039/c2dt32279j
  17. A cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aque vol.42, pp.47, 2013, https://doi.org/10.1039/c3dt51916c
  18. Polymer-based biocompatible fluorescent sensor for nano-molar detection of Zn2+ in aqueous medium and biological samples vol.1, pp.1, 2014, https://doi.org/10.1039/c3qi00031a
  19. MOLEKÜLER CIMBIZLAMAYA DAYALI YENİ BİR BISFENOL-BIPHENANTHROLINE SENTEZİ vol.1, pp.2, 2015, https://doi.org/10.22531/muglajsci.209999
  20. Fluorescent Sensor for Sequentially Monitoring Zinc(II) and Cyanide Anion in Near-Perfect Aqueous Media vol.57, pp.1, 2010, https://doi.org/10.1021/acs.iecr.7b03826
  21. Thiazole‐based Orange‐emitting Excited‐State Intramolecular Proton Transfer Chemosensors for Selective and Ratiometric Sensing of Zn 2+ Ions vol.40, pp.10, 2010, https://doi.org/10.1002/bkcs.11872
  22. Novel Benzothiazole-Based Highly Selective Ratiometric Fluorescent Turn-On Sensors for Zn2+ and Colorimetric Chemosensors for Zn2+, Cu2+, and Ni2+ Ions vol.6, pp.38, 2010, https://doi.org/10.1021/acsomega.1c02855