DOI QR코드

DOI QR Code

Reaction of Tri-methylaluminum on Si (001) Surface for Initial Aluminum Oxide Thin-Film Growth

  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hyun (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Jeong, Yong-Chan (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • Received : 2010.04.26
  • Accepted : 2010.09.27
  • Published : 2010.12.20

Abstract

We studied the reaction of tri-methylaluminum (TMA) on hydroxyl (OH)-terminated Si (001) surfaces for the initial growth of aluminum oxide thin-films using density functional theory. TMA was adsorbed on the oxygen atom of OH due to the oxygen atom’s lone pair electrons. The adsorbed TMA reacted with the hydrogen atom of OH to produce a di-methylaluminum group (DMA) and methane with an energy barrier of 0.50 eV. Low energy barriers in the range of 0 - 0.11 eV were required for DMA migration to the inter-dimer, intra-dimer, and inter-row sites on the surface. A unimethylaluminum group (UMA) was generated at each site with low energy barriers in the range of 0.21 - 0.25 eV. Among the three sites, the inter-dimer site was the most probable for UMA formation.

Keywords

References

  1. Colinge, J.-P. Solid State Electron 2004, 48, 897. https://doi.org/10.1016/j.sse.2003.12.020
  2. Koh, M.; Mizubayashi, W.; Iwamoto, K.; Murakami, H.; Ono, T.IEEE Trans. Electron Dev. 2001, 48, 259. https://doi.org/10.1109/16.902724
  3. Front End Processes, International Technology Roadmap forSemiconductors; 2003.
  4. Lin, C.; Zhang, N.; Shen, Q. Metals & Mat. Inter. 2004, 10, 475. https://doi.org/10.1007/BF03027351
  5. Kim, W. S.; Kawahara, T.; Itoh, H.; Horiuchi, A.; Muto, A.; Maeda,T.; Mitsuhashi, R.; Torii, K.; Kitajima, H. Jap. J. Appl. Phys. 2004,43, 1860. https://doi.org/10.1143/JJAP.43.1860
  6. Wilk, G. D.; Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001,89, 5243. https://doi.org/10.1063/1.1361065
  7. Klein, T. M.; Niu, D.; Epling, W. S.; Li, W.; Maher, D. M.; Hobbs,C. C.; Baumvol, I. J. R.; Parsons, G. N. Appl. Phys. Lett. 1999, 75,4001. https://doi.org/10.1063/1.125519
  8. Jeon, T. S.; White, J. M.; Kwong, D. L. Appl. Phys. Lett. 2001, 78,368. https://doi.org/10.1063/1.1339994
  9. Sayan, S.; Garfunkel, E.; Nishimura, T.; Schulte, W. H.; Gustafsson,T.; Wilk, G. D. J. Appl. Phys. 2003, 94, 928. https://doi.org/10.1063/1.1578525
  10. Copel, M.; Cartier, E.; Gusev, E. P.; Guha, S.; Bojarczuk, N.; Poppeller,M. Appl. Phys. Lett. 2001, 78, 2670. https://doi.org/10.1063/1.1367902
  11. Guha, S.; Gusev, E. P.; Okorn-Schmidt, H.; Copel, M.; Ragnarsson,L.$-{\AA}$; Bojarczuk, N. A.; Ronsheim, P. Appl. Phys. Lett. 2002,81, 2956. https://doi.org/10.1063/1.1513662
  12. Yu, X.; Zhu, C.; Yu, M. Appl. Phys. Lett. 2006, 89, 163508. https://doi.org/10.1063/1.2363144
  13. Rhee, S. J.; Lee, J. C. Microelectron. Reliability 2005, 45, 1051. https://doi.org/10.1016/j.microrel.2005.01.006
  14. Groner, M. D.; Fabreguette, F. H.; Elam, J. W.; George, S. M.Chem. Mater. 2004, 16, 639. https://doi.org/10.1021/cm0304546
  15. Ritala, M.; Kukli, K.; Rathu, A.; Raisanen, P. I.; Leskelä, M.; Sajavaara,T.; Leinonen, J. Science 2000, 288, 319. https://doi.org/10.1126/science.288.5464.319
  16. Georges, S. M.; Ott, A. W.; Klaus, J. W. J. Phys. Chem. 1996, 100,13121. https://doi.org/10.1021/jp9536763
  17. Ye, P. D.; Wilk, G. D.; Kwo, J.; Yang, B.; Gossmann, H.-J. L.; Chu,S. N. G.; Mannaerts, J. P.; Sergent, M.; Hong, M.; Ng, K. K.; Bude,J. IEEE Electron Dev. Lett. 2003, 24, 209. https://doi.org/10.1109/LED.2003.812144
  18. Manchanda, L.; Morris, M. D.; Green, M. L.; van Dover, R. B.;Klemens, F.; Sorsch, T. W.; Silverman, P. J.; Wilk, G.; Busch, B.;Aravamudhan, S. Microelectron. Eng. 2001, 59, 351. https://doi.org/10.1016/S0167-9317(01)00668-2
  19. Widjaja, Y.; Musgrave, C. B. Appl. Phys. Lett. 2002, 80, 3304. https://doi.org/10.1063/1.1473237
  20. Heyman, A.; Musgrave, C. B. J. Phys. Chem. B 2004, 108, 5718. https://doi.org/10.1021/jp049762x
  21. Halls, M. D.; Raghavachari, K. J. Phys. Chem. B 2004, 108, 4058. https://doi.org/10.1021/jp0378079
  22. Halls, M. D.; Raghavachari, K.; Frank, M. M.; Chabal, Y. J. Phys.Rev. B 2003, 68, 161302. https://doi.org/10.1103/PhysRevB.68.161302
  23. Ghosh, M. K.; Choi, C. H. Chem. Phys. Lett. 2006, 426, 365. https://doi.org/10.1016/j.cplett.2006.05.126
  24. Lee, S. S.; Baik, J. Y.; An, K. S.; Suh, Y. D.; Oh, J. H.; Kim, Y. J.Phys. Chem. B 2004, 108, 15128. https://doi.org/10.1021/jp048038b
  25. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558 https://doi.org/10.1103/PhysRevB.47.558
  26. Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. https://doi.org/10.1103/PhysRevB.49.14251
  27. Kresse, G.; Furthmuller, J. Comput. Mat. Sci. 1996, 6, 15. https://doi.org/10.1016/0927-0256(96)00008-0
  28. Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. https://doi.org/10.1103/PhysRevB.54.11169
  29. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. https://doi.org/10.1103/PhysRevB.59.1758
  30. Wood, D. M.; Zunger, A. J. Phys. A 1985, 18, 1343. https://doi.org/10.1088/0305-4470/18/9/018
  31. Pulay, P. Chem. Phys. Lett. 1980, 73, 393. https://doi.org/10.1016/0009-2614(80)80396-4
  32. Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys. 2008, 128,134106. https://doi.org/10.1063/1.2841941
  33. Kim, D.-H.; Kim, D.-H.; Seo, H.-I.; Kim, Y.-C. Trans. Electric. &Electron. Mater. 2010, 11, 11. https://doi.org/10.4313/TEEM.2010.11.1.011