DOI QR코드

DOI QR Code

A note on Linguistic quantifiers modeled by Sugeno integral with respect to an interval-valued fuzzy measures

구간치 퍼지측도와 관련된 수게노적분에 의해 모델화된 언어 정량자에 관한 연구

  • Received : 2009.11.30
  • Accepted : 2010.01.15
  • Published : 2010.02.25

Abstract

Ying[M.S. Ying, Linguistic quantifiers modeled by Sugeno integrals, Artificial Intelligence 170(2006) 581-606] studied a framework for modeling quantifiers in natural languages in which each linguistic quantifier is represented by a family of fuzzy measures and the truth value of a quantified proposition is evaluated by using Sugeno integral. In this paper, we consider interval-valued fuzzy measures and interval quantifiers which are the generalized concepts of fuzzy measures and quantifiers, respectively. We also investigate logical properties of a first order language with interval quantifiers modeled by the Sugeno integral with respect to an interval-valued fuzzy measures.

Keywords

References

  1. R.J. Aumann, Integral of set-valued functions, J. Math. Anal. Appl. vol.12, pp.1-12, 1965. https://doi.org/10.1016/0022-247X(65)90049-1
  2. C. Guo and D. Zhang, On set-valued fuzzy measures, Information Sciences vol.160, pp.13-25, 2004. https://doi.org/10.1016/j.ins.2003.07.006
  3. L. C. Jang, T. Kim, J. Jeon, On set-valued Choquet integrals and convergence theorems, Advanced Studies in Contemporary Mathematics vol.6, pp.63-76, 2003.
  4. L. C. Jang, A study on applications of Choquet integral on interval-valued fuzzy sets, Proceedings of the Jangjeon Mathematical Society vol.10, pp.161-172, 2007.
  5. L. C. Jang, A note on distance measure and similarity measure defined by Choquet integral on interval-valued fuzzy sets, J. of Fuzzy Logic and Intelligence Systems vol.17, no.4, pp.455-459, 2007. https://doi.org/10.5391/JKIIS.2007.17.4.455
  6. L. C. Jang, Interval-valued Choquet integrals and applications in pricing risks, J. of Fuzzy Logic and Intelligence Systems vol.17, no.4, pp.451-454, 2007. https://doi.org/10.5391/JKIIS.2007.17.4.451
  7. L.C. Jang, A note on the monotone interval- valued set function defined by the interval- valued Choquet integral, Commun. Korean Math. Soc. vol.22, no.2, pp.227-234, 2007. https://doi.org/10.4134/CKMS.2007.22.2.227
  8. L.C. Jang, Structural characterizations of monotone interval-valued set functions defined by the interval-valued Choquet integral, Fuzzy Logic and Intelligent vol.18, no.3, pp.311-315, 2008. https://doi.org/10.5391/JKIIS.2008.18.3.311
  9. L.C. Jang, H.M. Kim, and T. Kim, A note on interval-valued inclusion measures, Proceedings of Jangjeon Mathematics Society vol.12, no.2, pp.157-163, 2009.
  10. H. M. Kim, L. C. Jang, T. Kim, On closed set-valued Choquet integrals with respect to non-monotonic fuzzy measures, Proceedings of ther Jangjeon Mathematical Society vol.7, pp.109-116, 2004.
  11. T. Murofushi and M. Sugeno, A theory of fuzzy measure representations, the Choquet integral, and null sets, J. Math. Anal. Appl. vol.159, pp.532-549, 1991. https://doi.org/10.1016/0022-247X(91)90213-J
  12. M. Sugeno, Theory of fuzzy integrals and its applications, Doctorial Thesis, TokyonInstitute of Technology, Tokyo, 1974.
  13. D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. vol.97, no.2, pp.225-261, 1986.
  14. Kurt Weichselberger, The theory of interval- probability as a unifying concept for uncertainty, International J. of Approximation Reasioning vol.24, pp.149-170, 2000. https://doi.org/10.1016/S0888-613X(00)00032-3
  15. M.S. Ying, Linguistic quantifiers modeled by Sugeno integrals, Artificial Intelligence vol.170, pp.581-606, 2006. https://doi.org/10.1016/j.artint.2006.02.001
  16. L.A. Zadeh, Fuzzy sets, Information and Control vol.8, pp. 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
  17. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasioning, Information and Control vol.8, pp. 338-353, 1975. https://doi.org/10.1016/S0019-9958(65)90241-X
  18. D. Zhang and Z.Wang, On set-valued fuzzy integrals, Fuzzy Sets and Systems vol.56, pp.237-241, 1993. https://doi.org/10.1016/0165-0114(93)90149-C