화재발열량계의 효율적 설계를 위한 수치해석 모델의 적용

Application of Numerical Model for the Effective Design of Large Scale Fire Calorimeter

  • 투고 : 2010.07.19
  • 심사 : 2010.12.10
  • 발행 : 2010.12.31

초록

본 연구는 전산유체역학기법을 통해 화재유동을 수치적으로 모델링하고 화재발열량계 내부의 유동특성과 발열량 측정의 불확실성에 영향을 미치는 주요 측정인자들의 특성을 파악하고자 한다. 수치해석에 이용된 프로그램은 ANSYS사의 CFX 12.1이고 에디소산모델과 P-1 근사법을 적용하여 연소반응과 복사열전달을 해석한다. 수치해석결과 $90^{\circ}$ 곡관이 적용된 배기덕트의 경우 측정면에서 상대적으로 비대칭성이 높은 유동분포를 보였으며 속도장의 편차가 온도나 농도장의 편차에 비해 상대적으로 높게 나타났다. 이러한 연구를 통해 신뢰성 높은 화재발열량계의 구축을 위한 설계과정을 최적화하고 효율적인 시스템 운영을 위한 기초자료를 제공한다.

The present study develops a numerical model based on the computational fluid dynamics technique to analyse the thermal flow characteristics of large scale fire calorimeter and examine the characteristics of primary parameters affecting on the uncertainty of heat release rate measurement. ANSYS CFX version 12.1 which is a commercial CFD package is used to solve the governing equations of the thermal flow field and the eddy dissipation combustion model and P-1 radiation model are applied to simulate the fire driven flow. The numerical results shows that the horizontal duct system with $90^{\circ}$ bend duct was shown relatively high deviated asymmetric flow profiles at the sampling location and the deviation of the velocity field was higher than that of the temperature and species quantities. The present study shows that the computational model can be applicable to optimize the design process and operating condition of the large scale fire calorimeter based on the understanding of the detail flow field.

키워드

참고문헌

  1. C. Huggett, "Estimation of Rate of Heat Release by Means of Oxygen-consumption Measurements", Fire and Materials, Vol.4, No.2, pp.61-65(1980). https://doi.org/10.1002/fam.810040202
  2. L. Cooper, "Some Factors Affecting the Design of A calorimeter Hood and Exhaust", Journal of Fire Protection Engineering, Vol.6, No.3, pp.99-112(1994). https://doi.org/10.1177/104239159400600301
  3. S.C. Kim and M. Bundy, "Numerical Model of a Large Scale Oxygen Consumption Fire Calorimeter", Journal of Thermal Analysis and Calorimetry, Vol.93, No.3, pp.1013-1019(2008). https://doi.org/10.1007/s10973-007-8696-1
  4. R.A. Bryant, T.J. Ohlemiller, E.R. Johnsson, A. Hamins, B.S. Grove, G.W. Guthrie, A. Maranghides, and G.W. Mulholland, "The NIST 3MW Quantitative Heat Release Rate Facility-Description and Procedures", NISTIR 7052 (2004).
  5. 이의주, "화재연구를 위한 대형 콘 칼로리미터의 설계", 한국화재소방학회 논문지, Vol.20, No.4, pp.65-71(2006).
  6. M. Bundy, A. Maranghides, R. Johnsson, S.C. Kim, and L. DeLauter, "Heat Release Uncertainty in the NIST Large Fire Laboratory", NIST Annual Fire Conference(2007).
  7. C.K. Westbrook and L. Dryer, "Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames", Combustion Science and Technology, Vol.27, pp.31-43(1981). https://doi.org/10.1080/00102208108946970
  8. ANSYS Inc., ANSYS CFX-Solver Theory Guide, Release 12.1(2009).
  9. B.J. McCaffrey and G. Heskestad, "Robust Bidirectional Low-Velocity Probe for Flame and Fire Application", Combustion and Flame, Vol.26, No.1, pp.125-127(1976). https://doi.org/10.1016/0010-2180(76)90062-6