DOI QR코드

DOI QR Code

Creep Behavior of a PZT Wafer Under Tensile Stress: Experiments and Modeling

인장하중을 받을 때 PZT 웨이퍼의 크립 거동: 실험과 모델링

  • Kim, Sang-Joo (Department of Mechanical and Information Engineering, University of Seoul) ;
  • Lee, Chang-Hoan (Korea Institute of Science and Technology Information)
  • 김상주 (서울시립대학교 기계정보공학과) ;
  • 이창환 (한국과학기술정보연구원)
  • Published : 2010.01.01

Abstract

A commercially available soft PZT wafer that is poled in thickness direction is subjected to longitudinal tensile stress loading in both short and open-circuit conditions. Variations of electric displacement in thickness direction and in-plane strains are measured over time during the loading. Different material responses in the two electrical boundary conditions are explained by the effects of piezoelectrically produced internal electric field on linear material moduli and domain switching mechanisms. Finally, a free energy model of normal distribution is introduced to explain the observed creep behavior, and its predictions are compared with experimental observations.

두께방향으로 분극처리되어 있는 상업용 PZT 웨이퍼가 폐쇄회로와 개방회로의 두 가지 전기적 경계조건에서 길이 방향으로 일정한 크기의 인장하중을 받는다. 하중과정 동안 두께 방향으로의 전기밀도와 평면내 변형률의 시간에 따른 변화를 측정한다. 두 가지 전기적 경계조건에서의 서로 다른 거동 특성을 시편 내부에서 발생하는 전기장과 분극역전 현상으로 설명한다. 마지막으로 관측된 크립 거동을 예측하기 위한 정규분포 형식을 가지는 자유 에너지 함수를 도입하고 모델의 예측과 실험결과를 비교한다.

Keywords

References

  1. Smith R. C., Seelecke S. and Dapino M., 2006, “A Unified Framework for Modeling Hysteresis in Ferroic Materials,”J. Mech. Phys. Solids, Vol. 54, pp. 785-811 https://doi.org/10.1016/j.jmps.2005.08.006
  2. Kim S. J. and Seelecke S., 2007,“A Rate-Dependent Three-Dimensional Free Energy Model for Ferroelectric Single Crystals,”Int. J. Solids Struct., Vol. 44, pp. 1196-1209 https://doi.org/10.1016/j.ijsolstr.2006.06.007
  3. Srivastava N. and Weng G. J., 2006, “A Theory of Double Hysteresis for Ferroelectric Crystals,”J. Appl. Phys., Vol. 99, 054103 https://doi.org/10.1063/1.2178391
  4. Belov, A. Y. and Kreher, W. S., 2005,“Viscoplastic Behavior of Perovskite Type Ferroelectrics,”Mat. Sci. Eng. B, Vol. 118, pp. 7-11 https://doi.org/10.1016/j.mseb.2004.12.057
  5. Kamlah, M., Liskowsky, A. C., McMeeking, R. M. and Balke, H., 2005, “Finite Element Simulation of a Polycrystalline Ferroelectric Based on a Multidomain Single Crystal Switching Model”, Int. J. Solids Struct., Vol. 42, pp. 2949-2964 https://doi.org/10.1016/j.ijsolstr.2004.09.045
  6. Liu, Q. D. and Huber, J. E., 2006, “Creep in Ferroelectrics due to Unipolar Electrical Loadin,”J. Euro. Ceram. Soc., Vol. 26, pp. 2799-2806 https://doi.org/10.1016/j.jeurceramsoc.2005.07.051
  7. Kim, S. J. and Lee, C. H., 2009, ”Creep Behavior of a Poled PZT Wafer Under Longitudinal Tensile Stress and Through Thickness Electric Field,”Int. J. Solids Struct., Vol. 46, pp. 716-725 https://doi.org/10.1016/j.ijsolstr.2008.09.016
  8. Kim, S. J., 2009, “Predictions of Tensile Creep Behavior of a PZT Wafer by Normally Distributed Free Energy Model,” Mech. Mat. Vol. 41, pp. 1253-1263 https://doi.org/10.1016/j.mechmat.2009.08.002
  9. Kim S. J., 2007, “A Prediction of Rate-Dependent Behavior in Ferroelectric Polycrystals,” Mat. Sci. Eng. B., Vol. 141, pp. 34-42 https://doi.org/10.1016/j.mseb.2007.05.012

Cited by

  1. Effects of inclusion on the creep rate of piezoelectric films pp.1537-6532, 2017, https://doi.org/10.1080/15376494.2017.1387320