DOI QR코드

DOI QR Code

The Temporal Disaggregation Model for Nonlinear Pan Evaporation Estimation

비선형 증발접시 증발량 산정을 위한 시간적 분해모형

  • 김성원 (동양대학교 철도토목학과) ;
  • 김정헌 (동양대학교 대학원 철도토목학과) ;
  • 박기범 (동양대학교 철도토목학과) ;
  • 김형수 (인하대학교 사회기반시스템공학부)
  • Received : 2010.03.15
  • Accepted : 2010.07.06
  • Published : 2010.08.31

Abstract

The goal of this research is to apply the neural networks models for the temporal disaggregation of the yearly pan evaporation (PE) data, Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model (MLP-NNM) and generalized regression neural networks model (GRNNM), respectively. And, for the performances evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. From this research, we evaluate the application of MLP-NNM and GRNNM for the temporal disaggregation of nonlinear time series data. We should, furthermore, construct the credible monthly PE data from the temporal disaggregation of the yearly PE data, and can suggest the available data for the evaluation of irrigation and drainage networks system.

본 연구의 목적은 연 증발접시 증발량의 시간적인 분해를 위하여 신경망모형을 적용하는데 있다. 신경망모형은 각각 다층 퍼셉트론 신경망모형(MLP-NNM)과 일반화된 회귀신경망모형(GRNNM)으로 구성되어 있다. 그리고 신경망모형의 수행평가를 위하여 훈련 및 테스트과정으로 구성되었다. 신경망모형의 훈련과정을 위하여 실측, 모의 및 혼합자료와 같은 세 가지 형태의 자료가 사용되었으며, 테스트과정을 위해서는 실측자료만 이용되었다. 본 연구를 통하여 비선형 시계열자료의 시간적 분해를 위해서 MLP-NNM과 GRNNM의 적용성을 평가하였다. 게다가 연 증발접시 증발량 자료의 시간적 분해로부터 신뢰성있는 월 증발접시 증발량자료를 구축할 수 있을 것이며, 관개배수 네트워크 시스템의 평가를 위한 이용가능한 자료를 제공할 수 있을 것이다.

Keywords

References

  1. 국토해양부(2007) 수자원 관리 종합정보 시스템 홈페이지 http://www.wamis.go.kr.
  2. 김성원, 김형수(2008) 증발접시 증발량과 알팔파 기준증발산량의 모형화를 위한 통합운영방법. 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 199-213.
  3. 김성원, 이순탁, 조정석(2001) 중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측. 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 303-316.
  4. Bruton, J.M., McClendon, R.W., and Hoogenboom, G. (2000) Estimating daily pan evaporation with artificial neural networks. Trans. of the ASAE, ASAE, Vol. 43, No. 2, pp. 491-496. https://doi.org/10.13031/2013.2730
  5. Burian, S.J., Durrans, S.R., Nix, S.J., and Pitt, R.E. (2001) Training artificial neural networks to perform rainfall disaggregation. J. of Hydrol. Engr., ASCE, Vol. 6, No. 1, pp. 43-51. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:1(43)
  6. Burian, S.J., Durrans, S.R., Tomic, S., Pimmel, R.L., and Wai, C.N. (2000) Rainfall disaggregation using artificial neural networks. J. of Hydrol. Engr., ASCE, Vol. 5, No. 3, pp. 299-307. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(299)
  7. Choi, J., Socolofsky, S.A., and Olivera, F. (2008) Hourly disaggregation of daily rainfall in Texas using measured hourly precipitation at other locations. J. of Hydrol. Engr., ASCE, Vol. 13, No. 6, pp. 476-487. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(476)
  8. Deb, K. (2001) Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, Chichester.
  9. Deswal, S. and Pal, M. (2008) Artificial neural network based modeling of evaporation losses in reservoirs. Proceedings of World Academy of Science, Engineering and Technology, Vol. 29, pp. 279-283.
  10. Eslamian, S.S., Gohari, S.A., Biabanaki, M., and Malekian, R. (2008) Estimation of monthly pan evaporation using artificial neural networks and support vector machines. J. of Appl. Sci., Vol. 8, No. 19, pp. 3497-3502. https://doi.org/10.3923/jas.2008.3497.3502
  11. Gundekar, H.G., Khodke, U.M., and Sarkar, S. (2008) Evaluation of pan coefficient for reference crop evapotranspiration for semiarid region. Irrig. Sci., Vol. 26, pp. 169-175. https://doi.org/10.1007/s00271-007-0083-y
  12. Gutierrez-Magness, A.L., and McCuen, R.H. (2004) Accuracy evaluation of rainfall disaggregation methods. J. of Hydrol. Engr., ASCE, Vol. 9, No. 2, pp. 71-78. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:2(71)
  13. Haykin, S. (2009) Neural networks and learning machines, 3rd Edition, Pearson Education Inc., NJ, USA.
  14. Jensen, M.E., Burman, R.D., and Allen, R.G. (1990) Evapotranspiration and irrigation water requirements, ASCE Manual and Report on Engineering Practice No. 70, ASCE, NY, pp. 332.
  15. Keskin, M.E. and Terzi, O. (2006) Artificial neural networks models of daily pan evaporation. J. of Hydrol. Engr., ASCE, Vol. 11, No. 1, pp. 65-70. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65)
  16. Kim, S. (2004) Neural Networks Model and Embedded Stochastic Processes for Hydrological Analysis in South Korea. KSCE J. of Civil Engr., KSCE, Vol. 8, No. 1, pp. 141-148. https://doi.org/10.1007/BF02829090
  17. Kim, S. and Kim, H.S. (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J. of Hydro., Vol. 351, pp. 299-317. https://doi.org/10.1016/j.jhydrol.2007.12.014
  18. Kim, S., Kim, J.H., and Park, K.B. (2009) Statistical learning theory for the disaggregation of the climatic data. Proc. 33rd IAHR Congress 2009, IAHR/AIRH, Vancouver, British Columbia, Canada, pp. 1154-1162.
  19. Kisi, O. (2006) Daily pan evaporation modeling using a neurofuzzy computing technique. J. of Hydro., Vol. 329, pp. 636-646. https://doi.org/10.1016/j.jhydrol.2006.03.015
  20. McCuen, R.H. (1993) Microcomputer applications in statistical hydrology, Prentice Hall, NJ, USA.
  21. Molina Martinez, J.M., Martinez Alvarez, V., Gonzalez-Real, M.M., and Baille, A. (2005) A simulation model for predicting hourly pan evaporation for meteorological data. J. of Hydro., Vol. 318, pp. 250-261.
  22. Neuroshell 2 (1993) Ward systems group, Inc., MD, USA.
  23. Rahimi Khoob, A. (2009) Estimating daily pan evaporation using artificial neural network in a semi-arid environment. Theor. Appl. Climatol., Doi : 10.1007/s00704-008-0096-3.
  24. Salas, J.D., Delleur, J.R., Yevjevich, V., and Lane, W.L. (1980) Applied modeling of hydrologic time series, Water Resor. Pub., Littleton, CO, USA.
  25. Salas, J.D., Smith, R.A., Tabios III, G.Q., and Heo, J.H. (2001) Statistical computing techniques in water resources and environmental engineering, Unpublished book in CE622, Colorado State University, Fort Collins, CO, USA.
  26. Specht, D.F. (1991) A general regression neural network. IEEE Trans. on Neural Networks, Vol. 2, No. 6, pp. 568-576. https://doi.org/10.1109/72.97934
  27. Sudheer, K.P., Gosain, A.K., Rangan, D.M., and Saheb, S.M. (2002) Modeling evaporation using an artificial neural network algorithm. Hydro. Process., Vol. 16, pp. 3189-3202. https://doi.org/10.1002/hyp.1096
  28. Tan, K.S., Chiew, F.H.S., and Grayson, R.B. (2007) A steepness index unit volume flood hydrograph approach for sub-daily flow disaggregation. Hydro. Process., Vol. 21, pp. 2807-2816. https://doi.org/10.1002/hyp.6501
  29. Tsoukalas, L.H. and Uhrig, R.E. (1997) Fuzzy and neural approaches in engineering, John Wiley & Sons Incorporated, New York, NY, USA.
  30. Wasserman, P.D. (1993) Advanced methods in neural computing, Van Nostrand Reinhold, New York, NY, USA.
  31. Zhang, J., Murch, R.R., Ross, M.A., Ganguly, A.R., and Nachabe, M. (2008) Evaluation of statistical rainfall disaggregation methods using rain-gauge information for west-central florida. J. of Hydrol. Engr., ASCE, Vol. 13, No. 12, pp. 1158-1169. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1158)