DOI QR코드

DOI QR Code

SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가

Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT

  • 박민지 (건국대학교 사회환경시스템공학과) ;
  • 신형진 (건국대학교 사회환경시스템공학과) ;
  • 박근애 (건국대학교 지역건설환경공학과) ;
  • 김성준 (건국대학교 환경시스템학부 사회환경시스템공학과)
  • 투고 : 2009.11.17
  • 심사 : 2010.06.07
  • 발행 : 2010.08.31

초록

기후변화는 전 세계적으로 다양한 영향을 끼치고 있다. 본 연구에서는 준분포형 연속 모형인 SWAT을 이용하여 소양강 유역(2,694.4 $km^2$)의 기후, 식생활력도, 토지이용 변화에 따른 수문요소 변화 값을 정량화하여 기후변화에 따른 수문요소의 영향을 분석하였다. 1997-2006년의 일 댐유입량을 이용하여 모형을 보정한 결과 Nash-Sutcliffe 모형 효율이 0.45-0.91로 나타났다. 기후변화 자료는 IPCC(Intergovernmental Panel on Climate Change)의 GCM 모형 중 MIROC3.2 hires, ECHAM5-OM, HadCM3의 결과 값을 입력하였으며, 이때 배출 시나리오는 A2, A1B와 B1을 사용하였다. 각 모형에 20C3M(20th Century Climate Coupled Model) 값과 과거 30년(1977-2006)의 값을 비교하여 오차 수정을 한 후 2000년(base line)을 기준으로 각 기간별 Change Factor Method로 다운스케일링을 실시하였다. 미래 기후자료는 2020s(2010-2039), 2050s(2040-2069), 2080s(2070-2099)의 기간으로 나누어 분석하였다. 미래 온도의 경우 연도별로는 $2.0{\sim}6.3^{\circ}C$ 증가하였으며, 계절적으로도 HadCM3를 제외한 전 기간에 증가하였다. 연강수량은 $-20.4{\sim}32.3%$ 변화하였으며, 가을의 강수량 감소와 겨울과 봄 강수량 증가가 모든 모형에서 나타났다. 미래 토지이용과 식생 활력도 예측에는 CA-Markov 방법과 MODIS LAI와 온도와의 회귀식을 사용하였다. 이에 따른 연중 수문요소 예측 결과, 증발산량은 최대 30.1% 증가하였으며, 토양수분과 지하수 함양량은 최대 32.4%, 55.4% 감소하는 것으로 예측되었다. 댐 유입량의 경우는 모형별 차이가 크며, $-38.6{\sim}29.5%$의 변화 범위를 보였다. 계절적으로는 모든 시나리오에서 가을의 댐 유입량, 토양수분, 지하수 함양량 감소를 보였으며, 온도와 강수량이 감소하는 일부기간을 제외하고는 증발산량은 모두 증가하였다.

Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.

키워드

참고문헌

  1. 김남원, 이병주, 이정은(2006) SWAT을 활용한 충주댐 유역의 융설 영향 평가, 한국수자원학회논문집, 한국수자원학회, Vol. 39, No. 10, pp. 833-844.
  2. 김병식, 김형수, 서병하, 김남원(2004) 기후변화가 용담댐 유역의 유출에 미치는 영향. 한국수자원학회논문집, 한국수자원학회, Vol. 37, No. 2, pp. 185-193.
  3. 박지훈(2005) MODIS 위성자료에 기반한 식물 순생산량 알고리즘 분석. 석사학위논문, 인하대학교.
  4. 안소라, 이용준, 박근애, 김성준(2008) 미래 토지이용 및 기후변화에 따른 하천유역의 유출특성 분석. 대한토목학회논문집, 대한토목학회, 제28권 제2B호, pp. 215-224.
  5. 안소라, 박민지, 박근애, 김성준(2009) 기후변화가 경안천 유역의 수문요소에 미치는 영향 평가. 한국수자원학회논문집, 한국수자원학회, Vol. 42, No. 1, pp. 33-50. https://doi.org/10.3741/JKWRA.2009.42.1.33
  6. 이승호(2007) 극다중분광 영상자료의 산림정보해석 및 활용기법 개발. 국립산림과학원. pp. 53-62.
  7. 전성우, 정휘철, 이동근, Matsuoka, Y., Harasawa, H. and Takahashi K. (2004) 기후변화영향평가모형 개발-물관리 부문을 중심으로-, p. 59.
  8. Alo, C.A. and Wang, G. (2008) Hydrological impact of the potential future vegetation response to climate change projected by 8 GCMs, Journal of Geophysical Research Biogeosciences, Vol. 113, G03011, doi:10.1029/2007JG000598.
  9. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998) Large-area hydrologic modeling and assessment: Part I. Model development, Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  10. Carter, T.R., Hulme, M., and Lal, M. (1999) IPCC-TGCIA Guidelines on the use of scenario data for climate impact and adaptation assessment, version 1, IPCC, Task Group on Scenarios for Impact assessment.
  11. Darren L.F., Yuzhou L., Eike L., and Minghua Z. (2009) Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology. doi: 10.1016/j.jhydrol.2009.05.016
  12. Diaz-Nieto, J. and Wilby, R.L. (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Climatic Change, Vol. 69, pp. 245-268. https://doi.org/10.1007/s10584-005-1157-6
  13. Droogers, P. and Aerts, J. (2005) Adaptation strategies to climate change and climate variability: a comparative study between seven contrasting river basins. Physics and Chemistry of the Earth. Vol. 30, pp. 339-346. https://doi.org/10.1016/j.pce.2005.06.015
  14. Ficklin, D.L., Luo, Y., Luedeling, E., and Zhang, M. (2009) Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology, doi: 10.1016/j.jhydrol.2009.05.016
  15. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
  16. Knisel, W.G. (1980) CREAMS: a field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. USDA, p. 643.
  17. Labat, D., Godderis, Y., Probst, J.L., and Guyot, J.L. (2004) Evidence for global runoff increase related to climate warming. Advances in Water Resources Vol. 27, No. 6, pp. 631-642. https://doi.org/10.1016/j.advwatres.2004.02.020
  18. Leary, N., Conde, C., Kulkarni, J., Nyong, A., and Pulhin, J. (2008) Climate change and vulnerability, p. 82.
  19. Lettenmaier, D.P., Wood, A.W., Palmer, R.N., Wood, E.F., and Stakhiv, E.Z. (1999) Water resources implications of global warming: A U.S. Regional Perspective. Climatic Change Vol. 43, No. 3, pp. 537-579. https://doi.org/10.1023/A:1005448007910
  20. Nash, L.L. and Gleick, P.H. (1991) Sensitivity of streamflow in the colorado basin to climatic changes. Journal of Hydrology Vol. 125, No. 3-4, pp. 221-241. https://doi.org/10.1016/0022-1694(91)90030-L
  21. Nash, L.L. and Gleick, P.H. (1993) Colorado River basin and climatic change. The sensitivity of streamflow and water supply to variations in temperature and precipitation. Pacific Inst. for Studies in Development, Environment and Security, Oakland, CA. PB-94-128527/XAB.
  22. Nash, J.E. and Sutcliffe, J.V. (1970) River flow foresting through conceptual models; Part 1-A discussion of principles. Journal Hydrology. Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  23. Lee, Y.J. and Kim, S.J. (2007) A modified CA-Markov technique for prediction of future land use change, Journal of Korean Society of Civil Engineers. Vol. 57, No. 6D, pp. 809-817.
  24. Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., and Ruedy, R. (1990) Potential Evapotranspiration and the Likelihood of Future Drought. Journal of Geophysical Research Vol. 95, No. D7, pp. 9983-10004. https://doi.org/10.1029/JD095iD07p09983
  25. Schaake, J.C. (1990) From climate to flow, in Climate Change and U.S. Water Resources, edited by P. E. Waggoner, chap. Vol. 8, pp. 177-206, John Wiley, New York.
  26. Soil Conservation Service (1984) SCS National Engineering Handbook. U.S. Department of Agriculture, Washington, D.C.
  27. Park, M.J., Shin, H.J., Lee, M.S., Park, G.A., Kim, N.W., Lim, K.J., and Kim, S.J. (2009) Assessment of Future Climate and Vegetation Canopy Changes and Their Impacts on Hydrological Behavior of Dam Watershed Using the SWAT Model. Stochastic Environmental Research and Risk Assessment (Submitted)
  28. Wilby, R.L. and Harris, I. (2006) A framework for assessing uncertainties in climate change impacts: low flow scenarios for the River Thames, UK, Water Resources Research. (2006), p. 42.