DOI QR코드

DOI QR Code

투수층 매설에 의한 해빈안정화에 관한 연구

A Study on Beach Stabilization by Laying Drainage Layer

  • 허동수 (국립경상대학교 해양토목공학과(해양산업연구소)) ;
  • 이우동 (일본나고야대학 공학연구과 사회기반공학전공) ;
  • 전호성 (국립경상대학교 해양토목공학과)
  • 투고 : 2010.01.04
  • 심사 : 2010.04.30
  • 발행 : 2010.06.30

초록

본 연구에서는 투수층 매설에 따른 해빈안정화의 효과를 논의하기 위하여, 파 투과성구조물 해빈/해저지반의 상호간섭을 직접해석 할 수 있는 3D-수치모델(LES-WASS-3D; 허동수와 이우동, 2007)을 이용하였다. 이 모델은 투과성구조물 내부의 유체저항으로서 층류저항, 난류저항, 관성저항을 포함하고 있으며 격자 크기보다 작은 와류를 고려하기 위하여 LES기법을 도입하고 있다. 먼저, 기존의 수리모형 실험치와 본 연구의 계산치를 비교 검토하여 이용한 수치모델의 타당성 및 유효성을 검증한 후, 해빈 내부에 투수층을 설치하여 수치시뮬레이션을 실시하였다. 수치실험결과를 통하여 투수층 매설에 따른 평균지하수위의 하강, 이안류 강도의 저하 등, 배수의 메커니즘을 파악한 후, 투수층의 배치형태(평균입경, 두께, 매설깊이, 경사) 및 입사파조건(파고, 주기)에 따른 해빈 내부의 평균지하수위분포에 대하여 고찰하였다.

The aim of this study is to survey the effects of laying drainage layer in sandy beach on beach stabilization. At first, the numerical model developed by Hur and Lee (2007), which is able to consider the flow through a porous medium with inertia, laminar and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction and can determine the eddy viscosity with LES turbulent model in 3-D wave field (LES-WASS-3D), is validated by comparing with existing experimental data. And then, numerical simulation is carried out to examine the characteristics of wave-sandy beach interaction for a beach with/without drainage layer. From the numerical results, it is shown that mean ground-water level around a foreshore decreases and offshore-ward flow over a seabed reduces in case of a beach with drainage layer. Moreover, the effects of cross profile of drainage layer and incident wave condition on mean ground-water level around a foreshore are also discussed as well the distribution of wave setup around the foreshore.

키워드

참고문헌

  1. 허동수, 염경선, 배기성 (2006) 혼성방파제에 작용히는 3차원 파압구조에 미치는 위상차의 영향. 대한토목학회논문집, 대한토목학회, 제26권 제5B호, pp. 563-572.
  2. 허동수, 이우동(2007) 잠제 주변의 파고분포 및 흐름의 3차원 특성; PART I-해빈이 없을 경우. 대한토목학회논문집, 대한토목학회, 제27권 제68호, pp. 689-701.
  3. 허동수, 이우동(2008) 잠제 설치 연안의 처오름 높이 특성; PART II-잠제의 평면배치에 의한 영향. 대한토목학회논문집, 대한토목학회, 제28권 제38호, pp. 345-354.
  4. 허동수, 이우동, 배기성(2008) 사각격자체계 수치모델에서의 경사면 처리기법에 관하여. 대한토목학회논문집, 대한토목학회, 제28권 제58호, pp. 591-594.
  5. 合田民實(1975 ) 淺海域におけ る波浪の碎波變形. 港灣技術研究所報告. 第14倦署, 第3號, pp. 59-106.
  6. 柳嶋慣一, 加藤-正, 片山忠, 磯上と知良, 村上悎幸(1991) 地下水位低下の前浜地形變化におよぼす影響. 海岸工學論文集, 第38倦, pp. 266-270.
  7. 柳嶋慣一, 藤一正, 天板勇治, 名城整, 望月德雄(1995) 現地海岸に埋設した透水層の排水流量と前浜地形 变化. 海岸工學論文集, 第42倦, pp. 726-730.
  8. 柳嶋慣一, 金沢澤, 平井宜典, 加藤一正, 望月德雄(1996) ストライプ状透水層の前浜地形变化に及ぼす三次元的效果. 海岸工學論文集, 第43倦, pp. 661-665.
  9. 片山忠, 黑川誠, 柳嶋慣-, 加藤-正, 長谷川巖(1992) 透水層設置による前浜地下水位の制御. 海岸工學論文集, 第39倦, pp. 871-875.
  10. 塩見雅樹, 戶引勳, 松川文彦, 津川昭博, 長谷川巖(1995) 透水層埋設による海浜安定化效果の定量的評侕. 海岸工學論文集, 第42倦, pp. 712-725.
  11. 左藤勝弘, 金圭漢, 竹內聖一(1995) 透水層埋設による前浜付近の波浪 . 浸透流予測計算. 海岸工學論文集, 第42倦, pp. 731-735.
  12. 左藤勝弘, 妻夫木一秀, 野口雄二, 岩佐直人(1996) 透水層理設による地下水位低下3次元予測計算. 海岸工學論文集, 第43倦, pp. 656-660.
  13. 左藤勝弘, 野口雄二, 長谷川巖(1998) 透水層埋設海浜における長周期波による浸透流計算. 海岸工學論文集, 第45倦, pp. 631-635.
  14. Ergun, S. (1952) Fluid flow through packed columns. Chem Eng., Vol. 48, No. 2, pp. 89-94.
  15. Hur, D.S. and Mizutani, N. (2003) Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater. Coastal Eng., Vol. 47, pp. 329-345. https://doi.org/10.1016/S0378-3839(02)00128-X
  16. Hur, D.S. (2004) Deformation of multi-directional random waves pass ing over an impenneable submerged breakwater installed on a sloping bed. Ocean Eng., Vol. 31, pp. 1295-1311. https://doi.org/10.1016/j.oceaneng.2003.12.005
  17. Hur, D.S., Lee, K.H., and Yeom, G.S. (2008) The phase difference effects on 3-D structure of wave pressure acting on a composite breakwater. Ocean Eng., Vol. 35, pp. 1826-1841. https://doi.org/10.1016/j.oceaneng.2008.08.019
  18. Liu, S. and Masliyah, J.H. (1999) Non-linear tlows in porous media. J. Non-Newtonian Fluid Mech. Vol. 86, No. 1, pp. 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
  19. Ma, H.H., Mizutani, N., Eguchi, S., and Hur, D.S. (2004) Study on beach profile change and wave induced velocity field in permeable beach. Journal of Civil Engineering in the Ocean, JSCE, Vol. 20, pp. 509-514 (in Japanese). https://doi.org/10.2208/prooe.20.509
  20. Parks, J.M. (1989) Beachface dewatering-A new appoarch to beach stabilization. THE COMPASS, Vol. 66, No. 2, pp. 65-72.
  21. Parks, J.M. (1991) New "REDGING" technology for inlets and beaches move sand to the pump. Coastal Sediment' 91, Vol. 2, pp. 1943-1954.
  22. Sakakiyama, T. and Kajima, R. (1992) Numerical simulation of nonlinear wave interacting with permeable breakwater. Proc. 23rd Int. Conf. Coastal Eng., ASCE, pp. 1517-1530.
  23. Smagorinsky, J. (1963) General circulation experiments with the primitive equation. Mon. Weath. Rev. Vol. 91, No. 3, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  24. van Gent, M.R.A. (1995) Wave interaction with permeable coastal structures. Ph.D. Thesis, Delft University The Netherlands.
  25. Vesterby, H. (1991) Coastal drain system. Proc. Inter comf. Geotechnical Eng. Coastal Development, pp.651-654.