DOI QR코드

DOI QR Code

Extraction of Glycosaminoglycan from Sea Hare, Aplysia kurodai, and Its Functional Properties 1. Optimum Extraction of Polysaccharide and Purification of Glycosaminoglycan

군소(Aplysia kurodai)에 분포하는 글루코사미노글리칸의 추출과 기능특성 1. 다당류 추출의 최적화와 글루코사미노글리칸의 정제

  • Yoon, Bo-Yeong (Dept. of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Byeong-Dai (Dept. of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Yeung-Joon (Dept. of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University)
  • 윤보영 (경상대학교 해양식품공학과/해양산업연구소) ;
  • 최병대 (경상대학교 해양식품공학과/해양산업연구소) ;
  • 최영준 (경상대학교 해양식품공학과/해양산업연구소)
  • Received : 2010.09.30
  • Accepted : 2010.11.12
  • Published : 2010.11.30

Abstract

The optimum condition was investigated for the extraction of glycosaminoglycan (GAG) from sea hare, Aplysia kurodai. The most effective enzyme was Flavourzyme for extraction of glycosaminoglycan. The optimum incubation temperature and time for hydrolysis were $60^{\circ}C$ and 15 hr, respectively. The yield of precipitated polysaccharide depended on Brix and ethanol volume. The most effective concentration of Brix and ethanol were sixty and 5 volume of ethanol, respectively. Most GAG was eluted between 0.5 M and 0.75 M NaCl gradient on DEAE-Sepharose column, and identified by electroconductivity. The contents of hexuronic acid from polysaccharide extract and GAG were 1.0 g/100 g and 6.0 g/100 g, respectively. Hexosamine of polysaccharide and GAG as indicator of GAG component was 5.6 g/100 g and 25.7 g/100 g, respectively. GAG was identified as heparan sulfate compared with bands of other GAG on agarose gel electrophoresis, and its molecular weight was 29.6 kDa on Superdex 200 HR column.

남해안에서 주로 여름철에 어획하여 부산 및 경남 지역을 위주로 소비하고 있는 군소에서 다당류 추출을 위한 최적 조건을 검토하였다. 군소 다당류 추출을 위한 단백질 가수분해 효소로는 Flavourzyme 500 MG가 가장 효과적이었고, 추출한 다당류의 회수를 위한 가장 효율적인 추출물의 농도와 ethanol 첨가량은 각각 Brix 60과 5배량이었다. DEAE-Sepharose 칼럼 크로마토그래피로 얻은 크로마토그램상의 전기전도도와 전기영동 이동도에 근거하여 0.5~0.75 M NaCl 상에서 용출되는 물질이 GAG임을 확인하였으며, heparan sulfate인 것으로 추정하였다. 다당추출물과 정제 GAG의 uronic acid 함량은 각각 1.0 g/100 g과 6.0 g/100 g이었고, GAG를 구성하는 성분으로 지표물질인 hexosamine의 함량은 당 추출물과 정제물에서 각각 5.6 g/100 g과 25.7 g/100g이었다. 정제물은 agarose 겔 전기영동 상에서 heparan sulfate로 추정되었으며, 분자량은 겔 크로마토그래피에서 29.6 kDa으로 나타났다.

Keywords

References

  1. Davies P, Roubin RH, Whitelock JM. 2008. Characterization and purification of glycosaminoglycans from crude biological samples. J Agric Food Chem 56: 343-348. https://doi.org/10.1021/jf072624v
  2. Woods RJ. 1998. Computational carbohydrate chemistry: what theoretical methods can tell us. Glycoconj J 15: 209-216. https://doi.org/10.1023/A:1006984709892
  3. Taylor ME, Drickamer K. 2006. Introduction to Glycobiology. 2nd ed. Oxford University Press, Oxford, UK. p 3-16.
  4. Dinesh R, Garud VM, Mamoru K, Balagurunathan K. 2008. Inhibition of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis. J Biol Chem 283: 28881-28887. https://doi.org/10.1074/jbc.M805939200
  5. Volpi N. 2006. Therapeutic applications of glycosaminoglycans. Current Medic Chem 13: 1799-1810. https://doi.org/10.2174/092986706777452470
  6. Stephen BMD. 2002. Glucosamine for arthritis. Health & Science Korea. http://hs.or.kr/a_glucosamine.html.
  7. Day L, Seymour RB, Pitts KF, Konczak I, Lundin L. 2009. Incoporation of functional ingredients into foods. Trends Food Sci Technol 20: 388-395. https://doi.org/10.1016/j.tifs.2008.05.002
  8. Iozzo RV. 1998. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67: 609-652. https://doi.org/10.1146/annurev.biochem.67.1.609
  9. Barsby T. 2006. Drug discovery and sea hares: bigger is better. Trends Biotech 24: 1-3. https://doi.org/10.1016/j.tibtech.2005.11.001
  10. Makoto O, Kigoshi H, Yoshid Y, Ishigaki T, Nisiwaki M, Tsukad I, Arakawa M, Ekimotod H, Yamada K. 2007. Aplyronine A, a potent antitumor macrolide of marine origin, and the congeners aplyronines B and C: isolation, structures, and bioactivities. Tetrahedron 63: 3138-3167. https://doi.org/10.1016/j.tet.2007.02.011
  11. Hirata K, Muraoka S, Suenaga K, Kuroda T, Kato T, Tanaka H, Yamamoto M, Taketa M, Yamada K, Kogoshi H. 2006. Structure basis for antitumor effect of aplyronine A. J Mol Biol 356: 945-954. https://doi.org/10.1016/j.jmb.2005.12.031
  12. Kuroda T, Suenaga K, Sakakura A. 2006. Study of the interaction between actin and antitumor substance aplyronine A with a novel fluorescent photoaffinity probe. Bioconjug Chem 17: 524-529. https://doi.org/10.1021/bc050324i
  13. Butzke D, Machuy N, Thiede B, Hurwitz R, Goedert S, Rudel T. 2004. Hydrogen peroxide produced by Aplysia ink toxin kills tumor cells independent of apoptosis via peroxiredoxin I sensitive pathways. Cell Death Differ 11: 608-617.
  14. Dawsar SM, Matsumoto R, Fujii Y. 2009. Purification and biochemical characterization of a D-galactose binding lectin from Japanese sea hare (Aplysia kurodai ) eggs. Biochemistry (Mosc) 74: 709-716. https://doi.org/10.1134/S0006297909070025
  15. AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 868-931.
  16. Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  17. Lowry OH, Rosebrough NJ, Farr AI, Randall RJ. 1951. Protein measurement with Folin phenol reagent. J Biol Chem 193: 256-275.
  18. Mauro SGP, Rodolpho M, Cludio A, Silva AV. 1998. Highly sulfated dermatan sulfates from ascidians. J Biol Chem 264: 9972-9979.
  19. Bitter T, Muir HM. 1962. A modified uronic acid carbazole reaction. Anal Biochem 4: 330-334. https://doi.org/10.1016/0003-2697(62)90095-7
  20. Frederik MA, Roger B, Robert EK, David DM. 2000. Preparation and analysis of glycoconjugate (Chapter 17). In Currunt Protocols in Molecular Biology. Hoboken NJ, ed. John Wiley & Sons, Inc., Hoboken, NJ, USA. p 17.9.
  21. SAS. 2002. JMP statistics and graphics guide. Version 5.0, SAS Institute, Cary, NC, USA. p 179-209.
  22. Dietrich CP, Dietrich SM. 1976. Electrophoretic behavior of acidic mucopolysaccharides in diamine buffers. Anal Biochem 70: 645-647. https://doi.org/10.1016/0003-2697(76)90496-6
  23. Mohamed BM. 2009. Polysaccharides from the skin of the ray Raja radula. Partial characterization and anticoagulant activity. Thrombo Res 123: 671-678. https://doi.org/10.1016/j.thromres.2008.05.018
  24. Iozzo RV. 2001. Proteoglycan protocols. In Methods in Molecular Biology. Humana Press Inc., Totowa, NJ, USA. Vol 2, p 171-184.
  25. Peter H, Alfred L. 1981. An unusual heparan sulfate isolated from lobsters (Homams americanus). J Biol Chem 257: 9840-9844.
  26. Sabrina B, Antonella B, Giangiacomo T. 2005. Molecular weight determination of heparin and dermatan sulfate by size exclusion chromatography with a triple detector array. Biomacromolecules 6: 168-173. https://doi.org/10.1021/bm049693s

Cited by

  1. Immune Regulating Effect of Polysaccharide Fraction from Sea Hare (Aplysia kurodai) vol.40, pp.3, 2011, https://doi.org/10.3746/jkfn.2011.40.3.372
  2. Aplysia kurodai -derived glycosaminoglycans increase the phagocytic ability of macrophages via the activation of AMP-activated protein kinase and cytoskeletal reorganization in RAW264.7 cells vol.27, 2016, https://doi.org/10.1016/j.jff.2016.08.059
  3. Reduction of Asthmatic Parameters by Sea Hare Hydrolysates in a Mouse Model of Allergic Asthma vol.9, pp.7, 2017, https://doi.org/10.3390/nu9070699
  4. Conditions for hydrolysis of perilla seed meal protein for producing hydrolysates and ultrafiltered peptides and their antioxidant activity vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.605
  5. 군소(Aplysia kurodai)에 분포하는 글루코사미노글리칸의 추출과 기능특성 2. 글루코사미노글리칸의 구조 특성 vol.39, pp.11, 2010, https://doi.org/10.3746/jkfn.2010.39.11.1647