DOI QR코드

DOI QR Code

Uncertainty Analysis of Spatial Distribution of Probability Rainfall: Comparison of CEM and SGS Methods

확률강우량의 공간분포에 대한 불확실성 해석: CEM과 SGS 기법의 비교

  • 서영민 (영남대학교 건설시스템공학과) ;
  • 여운기 (영남대학교 건설시스템공학과) ;
  • 이승윤 (한국수자원공사, K-water 수자원연구원) ;
  • 지홍기 (영남대학교 건설시스템공학과)
  • Received : 2010.10.07
  • Accepted : 2010.10.22
  • Published : 2010.11.30

Abstract

This study compares the CEM and SGS methods which are geostatistical stochastic simulation methods for assessing the uncertainty by spatial variability in the estimation of the spatial distribution of probability rainfall. In the stochastic simulations using CEM and SGS, two methods show almost similar results for the reproduction of spatial correlation structure, the statistics (standard deviation, coefficient of variation, interquartile range, and range) of realizations as uncertainty measures, and the uncertainty distribution of basin mean rainfall. However, the CEM is superior to SGS in aspect of simulation efficiency.

본 논문에서는 확률강우량에 대한 공간분포 추정에 있어서 공간변동성에 따른 불확실성을 평가하기 위하여 지구통계 학적 추계모의기법인 CEM과 SGS 기법을 비교하였다. CEM과 SGS를 이용한 추계모의에 있어서 공간상관구조의 재생성, 확률강우량에 대한 불확실성 평가측도로서 실현치에 대한 통계치(표준편차, 변동계수, 사분위수 범위 및 범위)의 공간분포, 유역평균강우량의 불확실성 분포의 경우 두 기법이 대체로 비슷한 결과를 보이는 것으로 분석되었다. 그러나 모의 효율성 측면에서는 CEM이 SGS에 비해 우수한 결과를 나타내는 것으로 분석되었다.

Keywords

References

  1. 서영민, 여운기, 이승윤, 지홍기(2010). "확률강우량의 공간분포 추정을 위한 KED 기법의 적용." 한국수자원학 회논문집, 한국수자원학회, 제43권, 제8호, pp. 757-767. https://doi.org/10.3741/JKWRA.2010.43.8.757
  2. Casta, A.C., Durao, R., Pereira, M.J., and Soares, A. (2008). "Using stochastic space-time models to map extreme precipitation in southern Portugal." Natural Hazards and Earth System Sciences, Vol. 8, pp. 763-773. https://doi.org/10.5194/nhess-8-763-2008
  3. Colle, B.A., Mass, C.F., and Westrick, K.J. (2000). "MM5 precipitation verification over the Pacific Northwest during the 1997-99 cool seasons." Weather and Forecasting, Vol. 15, pp. 730-744. https://doi.org/10.1175/1520-0434(2000)015<0730:MPVOTP>2.0.CO;2
  4. Deutsch, C.V., and Journel, A.G. (1997). GSLIB: Geostatistical software library and user's guide. 2nd Edition, Oxford University Press, New York.
  5. Dietrich, C., and Newsam, G. (1997). "Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix." SIAM Journal of Scientific Computation, Vol. 18, No. 4, pp. 1088-1107. https://doi.org/10.1137/S1064827592240555
  6. Dinku, T., Anagnostou, M., and Borga, M. (2002). "Improving radar-based estimation of rainfall over complex terrain." Journal of Applied Meteorology, Vol. 41, pp. 1163-1178. https://doi.org/10.1175/1520-0450(2002)041<1163:IRBEOR>2.0.CO;2
  7. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press, New York, p. 496.
  8. Haberlandt, U. (2007). "Geostatistical interpolation of hourly precipitation from rain gauge and radar for a large-scale extreme rainfall event." Journal of Hydrology, Vol. 332, pp. 144-157. https://doi.org/10.1016/j.jhydrol.2006.06.028
  9. Haberlandt, U., and Gattke, C. (2004). "Spatial interpolation vs. simulation of precipitation for rainfall-runoff modelling-a case study in the Lippe river basin." Proceedings of the British Hydrological Society International Conference: Hydrology: Science and Practice for the 21st Century, London, Vol. 1, pp. 120-127.
  10. Hengl, T. (2009). A practical guide to geostatistical mapping. 2nd Edition, University of Amsterdam.
  11. Kanevski, M. (2008). Advanced mapping of environmental data: geostatistics, machine learning and Bayesian maximum entropy. John Wiley & Sons, Inc.
  12. Kozintsev, B. (1999). Computations with Gaussian random fields. Ph.D. dissertation, University of Maryland, College Park, MD, USA, p. 33.
  13. Nott, D.J., and Wilson, R.J. (1997). "Parameter estimation for excursion set texture models." Signal Processing, Vol. 63, pp. 199-210. https://doi.org/10.1016/S0165-1684(97)00156-4
  14. Schultz, D.M., Steenburgh, W.J., Trapp, R.J., Horel, J., Kingsmill, D.E., Dunn, L.B., Rust, W.D., Cheng, L., Bansemer, A., Cox, J., Daugherty, J., Jorgensen, D.P., Meitin, J., Showell, L., Smull, B.F, Tarp, K., and Trainor, M. (2002). "Understanding Utah winter storms-The international precipitation experiment." Bulletin of the American Meteorological Society, Vol. 83, pp. 189-199. https://doi.org/10.1175/1520-0477(2002)083<0189:UUWSTI>2.3.CO;2
  15. Stoelinga, M.T., Hobbs, P.V., Mass, C.F., Locatelli, J.D., Colle, B.A., Houze, R.A.J., Rangno, A.L., Bond, N.A., Smull, B.F., Rasmussen, R.M., Thompson, G., and Colman, B.R. (2003). "Improvement of microphysical parameterization through observational verification experiment." Bulletin of the American Meteorological Society, Vol 84, pp. 1807-1813. https://doi.org/10.1175/BAMS-84-12-1807
  16. Vann, J., Bertoli, O., and Jackson, S. (2002). "An overview of geostatistical simulation for quantifying risk." Proceedings of the Geostatistical Association of Australasia Symposium: Quantifying Risk and Error, Perth, Western Australia, pp. 13-28.
  17. Webster, R., and Oliver, M.A. (2007). Geostatistics for environmental scientists. 2nd Edition, John Wiley & Sons, Ltd.
  18. Westrick, K.J., Mass, C.F., and Colle, B.A. (1999). "The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States." Bulletin of the American Meteorological Society, Vol. 80, pp. 2289-2298. https://doi.org/10.1175/1520-0477(1999)080<2289:TLOTWR>2.0.CO;2
  19. Young, C.B., Nelson, B.R., Bradley, A.A., Smith, J.A., Peters-Lidard, C.D., Kruger, A., and Baeck, M.L. (1999). "An evaluation of NEXRAD precipitation estimates in complex terrain." Journal of Geophysical Research, Vol. 104, No. D16, pp. 19691-19703. https://doi.org/10.1029/1999JD900123
  20. Zimmerman, D.L. (1989). "Computationally exploitable structure of covariance matrices and generalized covariance matrices in spatial models." Journal of Statistical Computation and Simulation, Vol. 32, pp. 1-15. https://doi.org/10.1080/00949658908811149

Cited by

  1. Uncertainty Analysis of Parameters of Spatial Statistical Model Using Bayesian Method for Estimating Spatial Distribution of Probability Rainfall vol.20, pp.12, 2011, https://doi.org/10.5322/JES.2011.20.12.1541
  2. Assessment of Uncertainty in the Spatial Distribution of Rainfall Using Geostochastic Simulation vol.19, pp.5, 2014, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000882
  3. Adjustment of Radar Precipitation Estimation Based on the Local Gauge Correction Method vol.35, pp.2, 2014, https://doi.org/10.5467/JKESS.2014.35.2.115