DOI QR코드

DOI QR Code

Epithelial-mesenchymal Transition and Cell Invasion

  • Son, Hwa-Jin (College of Pharmacy, Duksung Women's University) ;
  • Moon, Aree (College of Pharmacy, Duksung Women's University)
  • Received : 2010.10.20
  • Accepted : 2010.11.14
  • Published : 2010.12.01

Abstract

Epithelial-mesenchymal transition (EMT) is a complex process in which epithelial cells acquire the characteristics of invasive mesenchymal cells. EMT has been implicated in cancer progression and metastasis as well as the formation of many tissues and organs during development. Epithelial cells undergoing EMT lose cell-cell adhesion structures and polarity, and rearrange their cytoskeletons. Several oncogenic pathways such as transforming growth factor (TGF)-$\beta$, Wnt, and Notch signaling pathways, have been shown to induce EMT. These pathways have activated transcription factors including Snail, Slug, and the ZEB family which work as transcriptional repressors of E-cadherin, thereby making epithelial cells motile and resistant to apoptosis. Mounting evidence shows that EMT is associated with cell invasion and tumor progression. In this review, we summarize the characteristic features of EMT, pathways leading to EMT, and the role of EMT in cell invasion. Three topics are addressed in this review: (1) Definition of EMT, (2) Signaling pathways leading to EMT, (3) Role of EMT in cell invasion. Understanding the role of EMT in cell invasion will provide valuable information for establishing strategies to develop anti-metastatic therapeutics which modulate malignant cellular processes mediated by EMT.

Keywords

References

  1. Adam, L., Zhong, M., Choi, W., Qi, W., Nicoloso, M., Arora, A., Calin, G., Wang, H., Siefker-Radtke, A., McConkey, D., Bar-Eli, M. and Dinney, C. (2009). miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clinical Cancer Research, 15, 5060-5072. https://doi.org/10.1158/1078-0432.CCR-08-2245
  2. Akiyoshi, S., Inoue, H., Hanai, J., Kusanagi, K., Nemoto, N., Miyazono, K. and Kawabata, M. (1999). c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J. Biol. Chem., 274, 35269-35277. https://doi.org/10.1074/jbc.274.49.35269
  3. Bakin, A.V., Rinehart, C., Tomlinson, A.K. and Arteaga, C.L. (2002). p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J.Cell Sci., 115, 3193-3206.
  4. Bakin, A.V., Tomlinsos, A.K., Bhowmick, N.A., Moses, H.L. and Arteaga, C.L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor-a-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem., 275, 36803-36810. https://doi.org/10.1074/jbc.M005912200
  5. Balkwill, F. (2004). Cancer and the chemokine network. Nat. Rev. Cancer, 4, 540-550. https://doi.org/10.1038/nrc1388
  6. Batlle, E., Sancho, E., Francí, C., Domínguez, D., Monfar, M., Baulida, J. and García De Herreros, A. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell. Biol., 2, 84-89. https://doi.org/10.1038/35000034
  7. Boyer, B., Valles, A.M. and Edme, N. (2000). Induction and regulation of epithelial-mesenchymal transitions. Biochem. Pharmacol., 60, 1091-1099. https://doi.org/10.1016/S0006-2952(00)00427-5
  8. Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., Jung, A. and Kirchner T. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 179, 56-65. https://doi.org/10.1159/000084509
  9. Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L.A., Knuechel, R. and Kirchner, T. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl. Acad. Sci., 98, 10356-10361. https://doi.org/10.1073/pnas.171610498
  10. Cano, A., Pérez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F. and Nieto, M.A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2, 76-83. https://doi.org/10.1038/35000025
  11. Christiansen, J.J. and Rajasekaran, A.K. (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res., 66, 8319-8326. https://doi.org/10.1158/0008-5472.CAN-06-0410
  12. Christofori, G. (2006). New signals from the invasive front. Nature, 441, 444-450. https://doi.org/10.1038/nature04872
  13. Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D. and van Roy, F. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell, 7, 1267-1278. https://doi.org/10.1016/S1097-2765(01)00260-X
  14. Conacci-Sorrell, M., Simcha, I., Ben-Yedidia, T., Blechman, J., Savagner, P. and Ben-Ze’ev, A. (2003). Autoregulation of Ecadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J. Cell Biol., 163, 847-857. https://doi.org/10.1083/jcb.200308162
  15. Cordon-Cardo, C. and Prives, C. (1999). At the crossroads of inflammation and tumorigenesis. J. Exp. Med., 190, 1367-1370. https://doi.org/10.1084/jem.190.10.1367
  16. Davies, M., Robinson, M., Smith, E., Huntley, S., Prime, S. and Paterson, I. (2005). Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J. Cell Biochem., 95, 918-931. https://doi.org/10.1002/jcb.20458
  17. Derynck, R. and Zhang, Y.E. (2003). Smad-dependent and Smadindependent pathways in TGF-b family signalling. Nature, 425, 577-584. https://doi.org/10.1038/nature02006
  18. Duong, T.D. and Erickson, C.A. (2004). MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev. Dyn., 229, 42-53. https://doi.org/10.1002/dvdy.10465
  19. Feng, X.H. and Derynck, R. (2005). Specificity and versatility in TGF-beta signaling through Smads. Annu. Rev. Cell Dev. Biol., 21, 659-693. https://doi.org/10.1146/annurev.cellbio.21.022404.142018
  20. Ghoul, A., Serova, M., Astorgues-Xerri, L., Bieche, I., Bousquet, G., Varna, M., Vidaud, M., Phillips, E., Weill, S., Benhadji, K.A., Lokiec, F., Cvitkovic, E., Faivre, S. and Raymond, E. (2009). Epithelial-to-mesenchymal transition and resistance to ingenol 3-angelate, a novel protein kinase C modulator, in colon cancer cells. Cancer Res., 69, 4260-4269. https://doi.org/10.1158/0008-5472.CAN-08-2837
  21. Gotzmann, J., Mikula, M., Eger, A., Schulte-Hermann, R., Foisner, R., Beug, H. and Mikulits, W. (2004). Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat. Res., 566, 9-20. https://doi.org/10.1016/S1383-5742(03)00033-4
  22. Grande, M., Franzen, A., Karlsson, J.O., Ericson, L.E., Heldin, N.E. and Nilsson, M. (2002). Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J. Cell. Sci., 115, 4227-4236. https://doi.org/10.1242/jcs.00091
  23. Greenburg, G. and Hay, E.D. (1982). Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell. Biol., 95, 333-339. https://doi.org/10.1083/jcb.95.1.333
  24. Greenburg, G. and Hay, E.D. (1986). Cytodifferentiation and tissue phenotype change during transformation of embryonic lens epithelium to mesenchyme-like cells in vitro. Dev. Biol., 115, 363-379. https://doi.org/10.1016/0012-1606(86)90256-3
  25. Grunert, S., Jechlinger, M. and Beug, H. (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell. Biol., 4, 657-665. https://doi.org/10.1038/nrm1175
  26. Hay, E.D. (1968). Organization and fine structure of epithelium and mesenchyme in the developing chick embryo. In Epithelial-Mesenchymal Interactions; 18th Hahnemann Symposium, (eds. R. Fleischmajer, & R. E. Billingham), Williams & Wilkins, Baltimore.
  27. Hay, E.D. (1995). An overview of epithelio-mesenchymal transformation. Acta. Anat., 154, 8-20. https://doi.org/10.1159/000147748
  28. Hay, E.D. (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev. Dyn., 233, 706-720. https://doi.org/10.1002/dvdy.20345
  29. Heldin, C.H., Miyazono, K. and ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390, 465-471. https://doi.org/10.1038/37284
  30. Hoot, K.E., Lighthall, J., Han, G., Lu, S.L., Li, A., Ju, W., Kulesz-Martin, M., Bottinger, E. and Wang, X.J. (2008). Keratinocytespecific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J. Clin. Invest., 118, 2722-2732.
  31. Huber, M.A., Kraut, N. and Beug, H. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell. Biol., 17, 548-558. https://doi.org/10.1016/j.ceb.2005.08.001
  32. Humar, B., Blair, V., Charlton, A., More, H., Martin, I. and Guilford, P. (2009). E-cadherin deficiency initiates gastric signetring cell carcinoma in mice and man. Cancer Res., 69, 2050-2056. https://doi.org/10.1158/0008-5472.CAN-08-2457
  33. Illman, S.A., Lehti, K., Keski-Oja, J. and Lohi, J.(2006). Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J. Cell Sci., 119, 3856-3865. https://doi.org/10.1242/jcs.03157
  34. Jones, L.E., Humphreys, M.J., Campbell, F., Neoptolemos, J.P. and Boyd, M.T. (2004). Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin. Cancer Res., 10, 2832-2845. https://doi.org/10.1158/1078-0432.CCR-1157-03
  35. Ju, W., Ogawa, A., Heyer, J., Nierhof, D., Yu, L., Kucherlapati, R., Shafritz, D.A. and Böttinger, E.P. (2006). Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol. Cell. Biol., 26, 654-667. https://doi.org/10.1128/MCB.26.2.654-667.2006
  36. Kalluri, R. and Neilson, E.G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest., 112, 1776-1784. https://doi.org/10.1172/JCI200320530
  37. Kang, Y. and Massague, J. (2004). Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 118, 277-279. https://doi.org/10.1016/j.cell.2004.07.011
  38. Kim, E.S., Kim, M.S. and Moon, A. (2005). Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine, 29, 84-91. https://doi.org/10.1016/j.cyto.2004.10.001
  39. Kim, M.S., Lee, E.J., Kim, H.R. and Moon, A. (2003). p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res., 63, 5454-5461.
  40. Kim, M.A., Lee, H.S., Lee, H.E., Kim, J.H., Yang, H.K. and Kim, W.H. (2009). Prognostic importance of epithelial-mesenchymal-related protein expression in gastric carcinoma. Histopathology, 54, 442-451. https://doi.org/10.1111/j.1365-2559.2009.03247.x
  41. Lamouille, S. and Derynck, R. (2007). Cell size and invasion in TGF-$\beta$-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J. Cell Biol., 178, 437-451. https://doi.org/10.1083/jcb.200611146
  42. Larue, L. and Bellacosa, A. (2005). Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene, 24, 7443-7454. https://doi.org/10.1038/sj.onc.1209091
  43. Lee, M.K., Pardoux, C., Hall, M.C., Lee, P.S., Warburton, D., Qing, J., Smith, S.M. and Derynck, R. (2007). TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J., 26, 3957-3967. https://doi.org/10.1038/sj.emboj.7601818
  44. Lehmann, K., Janda, E., Pierreux, C.E., Rytömaa, M., Schulze, A., McMahon, M., Hill, C.S., Beug, H. and Downward, J. (2000). Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev., 14, 2610-2622. https://doi.org/10.1101/gad.181700
  45. Lewis-Tuffin, L.J., Rodriguez, F., Giannini, C., Scheithauer, B., Necela, B.M., Sarkaria, J.N. and Anastasiadis, P.Z. (2010). Misregulated e-cadherin expression associated with an aggressive brain tumor phenotype. PLoS One., 5, e13665. https://doi.org/10.1371/journal.pone.0013665
  46. Lien, S.C., Usami, S., Chien, S. and Chiu, J.J. (2006). Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells. Cell Signal, 18, 1270-1278. https://doi.org/10.1016/j.cellsig.2005.10.013
  47. Lin, C.C., Chiang, L.L., Lin, C.H., Shih, C.H., Liao, Y.T., Hsu, M.J. and Chen, B.C. (2007). Transforming growth factor-beta1 stimulates heme oxygenase-1 expression via the PI3K/Akt and NF-kappaB pathways in human lung epithelial cells. Eur. J. Pharmacol., 560, 101-109. https://doi.org/10.1016/j.ejphar.2007.01.025
  48. Liu, D., Nakano, J., Ishikawa, S., Yokomise, H., Ueno, M., Kadota, K., Urushihara, M. and Huang, C.L. (2007). Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer, 58, 384-391. https://doi.org/10.1016/j.lungcan.2007.07.005
  49. Massague, J. and Chen, Y.G. (2000). Controlling TGF-beta signaling. Genes Dev., 14, 627-644.
  50. McConkey, D.J., Choi, W., Marquis, L., Martin, F., Williams, M.B., Shah, J., Svatek, R., Das, A., Adam, L., Kamat, A., Siefker-Radtke, A. and Dinney, C. (2009). Role of epithelial-tomesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev., 28, 335-344. https://doi.org/10.1007/s10555-009-9194-7
  51. McGuire, J.K., Li, Q. and Parks, W.C. (2003). Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am. J. Pathol., 162, 1831-1843. https://doi.org/10.1016/S0002-9440(10)64318-0
  52. Micalizzi, D.S., Farabaugh, S.M. and Ford, H.L. (2010). Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia, 15, 117-134. https://doi.org/10.1007/s10911-010-9178-9
  53. Morgia, G., Falsaperla, M., Malaponte, G., Madonia, M., Indelicato, M., Travali, S. and Mazzarino, M.C. (2005). Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer. Urol Res., 33, 44-50. https://doi.org/10.1007/s00240-004-0440-8
  54. Moustakas, A. and Heldin, C.H. (2005). Non-Smad TGF-beta signals. J. Cell Sci., 118, 3573-3584. https://doi.org/10.1242/jcs.02554
  55. Moustakas, A. and Heldin, C.H. (2007). Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and caner progression. Cancer Sci., 98, 1512-1520. https://doi.org/10.1111/j.1349-7006.2007.00550.x
  56. Nawshad, A., Lagamba, D., Polad, A. and Hay, E.D. (2005). Transforming growth factor-beta signaling during epithelialmesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs, 179, 11-23. https://doi.org/10.1159/000084505
  57. Nawshad, A., Medici, D., Liu, C.C. and Hay, E.D. (2007). TGFbeta3 inhibits E-cadherin gene expression in palate medialedge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J. Cell. Sci., 120, 1646-1653. https://doi.org/10.1242/jcs.003129
  58. Nishihara, A., Hanai, J.I., Okamoto, N., Yanagisawa, J., Kato, S., Miyazono, K. and Kawabata, M. (1998). Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells, 3, 613-623. https://doi.org/10.1046/j.1365-2443.1998.00217.x
  59. Noel, A., Boulay, A., Kebers, F., Kannan, R., Hajitou, A., Calberg-Bacq, C.M., Basset, P., Rio, M.C. and Foidart, J.M. (2000). Demonstration in vivo that stromelysin-3 functions through its proteolytic activity. Oncogene,19, 1605-1612. https://doi.org/10.1038/sj.onc.1203465
  60. Oft, M., Heider, K.H. and Beug, H. (1998). TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol., 8, 1243-1252. https://doi.org/10.1016/S0960-9822(07)00533-7
  61. Peinado, H., Olmeda, D. and Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415-428. https://doi.org/10.1038/nrc2131
  62. Perez-Moreno, M., Jamora, C. and Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell, 112, 535-548. https://doi.org/10.1016/S0092-8674(03)00108-9
  63. Piek, E., Moustakas, A., Kurisaki, A., Heldin, C.H. and Ten Dijke, P. (1999). TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J. Cell Sci., 112, 4557-4568.
  64. Platten, M., Wick, W. and Weller, M. (2001). Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc. Res. Tech., 52, 401-410. https://doi.org/10.1002/1097-0029(20010215)52:4<401::AID-JEMT1025>3.0.CO;2-C
  65. Pon, Y.L., Zhou, H.Y., Cheung, A.N., Ngan, H.Y. and Wong, A.S. (2008). p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res., 68, 6524-6532. https://doi.org/10.1158/0008-5472.CAN-07-6302
  66. Radisky, E.S. and Radisky, D.C. (2010). Matrix metalloproteinaseinduced epithelial-mesenchymal transition in breast cancer. J. Mammary Gland Biol. Neoplasia., 15, 201-212. https://doi.org/10.1007/s10911-010-9177-x
  67. Radisky, D.C., Levy, D.D., Littlepage, L.E., Liu, H., Nelson, C.M., Fata, J.E., Leake, D., Godden, E.L., Albertson, D.G., Nieto, M.A., Werb, Z. and Bissell, M.J. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123-127. https://doi.org/10.1038/nature03688
  68. Reiss, M. and Barcellos-Hoff, M.H. (1997). Transforming growth factor-beta in breast cancer: a working hypothesis. Breast Cancer Res. Treat., 45, 81-95. https://doi.org/10.1023/A:1005865812918
  69. Roger, L., Jullien, L., Gire, V. and Roux, P. (2010). Gain of oncogenic function of p53 mutants regulates E-cadherin expression uncoupled from cell invasion in colon cancer cells. J. Cell Sci., 123, 1295-1305. https://doi.org/10.1242/jcs.061002
  70. Saika, S., Kono-Saika, S., Ohnishi, Y., Sato, M., Muragaki, Y., Ooshima, A., Flanders, K.C., Yoo, J., Anzano, M., Liu, C.Y., Kao, W.W. and Roberts, A.B. (2004). Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am. J. Pathol., 164, 651-663. https://doi.org/10.1016/S0002-9440(10)63153-7
  71. Santibanez, J.F. (2006). JNK mediates TGF-beta1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett., 580, 5385-5391. https://doi.org/10.1016/j.febslet.2006.09.003
  72. Sarbassove, D.D., Ali, S.M., and Sabatini, D.M. (2005). Growing roles for the mTOR pathway. Curr. Opin. Cell Biol., 17, 596-603. https://doi.org/10.1016/j.ceb.2005.09.009
  73. Sato, M., Muragaki, Y., Saika, S., Roberts, A.B. and Ooshima, A. (2003). Targeted disruption of TGF-$\beta$1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest., 112, 1486-1494. https://doi.org/10.1172/JCI200319270
  74. Schilling, S.H., Hjelemeland, A.B., Rich, J.N. and Wang, X.F. (2008). TGF-$\beta$ Family (eds. Derynck, R., and Miyazono, K.). Cold Spring Harbor Laboratory Pres, New York, pp. 45-78.
  75. Snoek-van Beurden, P.A. and Von den Hoff, J.W. (2005). Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques, 38, 73-83. https://doi.org/10.2144/05381RV01
  76. Somiari, S.B., Somiari, R.I., Heckman, C.M., Olsen, C.H., Jordan, R.M., Russell, S.J. and Shriver, C.D. (2006). Circulating MMP2 and MMP9 in breast cancer -- potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories. Int. J. Cancer, 119, 1403-1411. https://doi.org/10.1002/ijc.21989
  77. Song, H., Ki, S.H., Kim, S.G. and Moon, A. (2006). Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res., 66, 10487-10496. https://doi.org/10.1158/0008-5472.CAN-06-1461
  78. Song, W., Jackson, K. and McGuire, P.G. (2000). Degradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Dev. Biol., 227, 606-617. https://doi.org/10.1006/dbio.2000.9919
  79. Taki, M., Kamata, N., Yokoyama, K., Fujimoto, R., Tsutsumi, S. and Nagayama, M. (2003). Down-regulation of Wnt-4 and upregulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci., 94, 593-597. https://doi.org/10.1111/j.1349-7006.2003.tb01488.x
  80. Takkunen, M., Grenman, R., Hukkanen, M., Korhonen, M., García de Herreros, A. and Virtanen, I. (2006). Snail-dependent and - independent epithelial-mesenchymal transition in oral squamous carcinoma cells. J. Histochem. Cytochem., 54, 1263-1275. https://doi.org/10.1369/jhc.6A6958.2006
  81. Tavares, A.L., Mercado-Pimentel, M.E., Runyan, R.B. and Kitten, G.T. (2006). TGF-$\beta$-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart. Dev. Dyn., 235, 1589-1598. https://doi.org/10.1002/dvdy.20771
  82. Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2, 442-454. https://doi.org/10.1038/nrc822
  83. Thiery, J.P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell. Biol., 15, 740-746. https://doi.org/10.1016/j.ceb.2003.10.006
  84. Thiery, J.P. and Morgan, M. (2004). Breast cancer progression with a Twist. Nat. Med., 10, 777-778. https://doi.org/10.1038/nm0804-777
  85. Timmerman, L.A., Grego-Bessa, J., Raya, A., Bertran, E., Perez-Pomares, J.M., Diez, J., Aranda, S., Palomo, S., McCormick, F., Izpisua-Belmonte, J.C. and de la Pompa, J.L. (2004). Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev., 18, 99-115. https://doi.org/10.1101/gad.276304
  86. Trelstad, R.L., Hay, E.D. and Revel, J.D. (1967). Cell contact during early morphogenesis in the chick embryo. Dev. Biol., 16, 78-106. https://doi.org/10.1016/0012-1606(67)90018-8
  87. Trimboli, A.J., Fukino, K., de Bruin, A., Wei, G., Shen, L., Tanner, S.M., Creasap, N., Rosol, T.J., Robinson, M.L., Eng, C., Ostrowski, M.C. and Leone, G. (2008). Direct evidence for epithelial- mesenchymal transitions in breast cancer. Cancer Res., 68, 937-945. https://doi.org/10.1158/0008-5472.CAN-07-2148
  88. Uttamsingh, S., Bao, X., Nguyen, K.T., Bhanot, M., Gong, J., Chan, J.L., Liu, F., Chu, T.T. and Wang, L.H. (2008). Synergistic effect between EGF and TGF-beta1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene, 27, 2626-2634. https://doi.org/10.1038/sj.onc.1210915
  89. Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.H. and Moustakas, A. (2005). TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell, 16, 1987-2002. https://doi.org/10.1091/mbc.E04-08-0658
  90. Voulgari, A. and Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta., 1796, 75-90.
  91. Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J.P., Nevo, J., Gjerdrum, C., Tiron, C., Lorens, J.B. and Ivaska, J. (2010). Vimentin regulates EMT induction by Slug and oncogenic HRas and migration by governing Axl expression in breast cancer. Oncogene, Epub ahead of print.
  92. Wang, Z., Banerjee, S., Li, Y., Rahman, K.M., Zhang, Y. and Sarkar, F.H. (2006). Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res., 66, 2778-2784. https://doi.org/10.1158/0008-5472.CAN-05-4281
  93. Wick, W., Platten, M. and Weller, M. (2001). Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J. Neurooncol., 53, 177-185. https://doi.org/10.1023/A:1012209518843
  94. Xie, L., Law, B.K., Chytil, A.M., Brown, K.A., Aakre, M.E. and Moses, H.L. (2004). Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia, 6, 603-610. https://doi.org/10.1593/neo.04241
  95. Xu, J., Lamouille, S. and Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Res., 19, 156-172. https://doi.org/10.1038/cr.2009.5
  96. Yee, D.S., Tang, Y., Li, X., Liu, Z., Guo, Y., Ghaffar, S., McQueen, P., Atreya, D., Xie, J., Simoneau, A.R., Hoang, B.H. and Zi, X. (2010). The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol. Cancer, 9, 162. https://doi.org/10.1186/1476-4598-9-162
  97. Yi, J.Y., Shin, I. and Arteaga, C.L. (2005). Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem., 280, 10870-10876. https://doi.org/10.1074/jbc.M413223200
  98. Yook, J.I., Li, X.Y., Ota, I., Fearon, E.R. and Weiss, S.J. (2005). Wnt-dependent regulation of the E-cadherin repressor snail. J. Biol. Chem., 280, 11740-11748. https://doi.org/10.1074/jbc.M413878200
  99. Yu, L., Hébert, M.C. and Zhang, Y.E. (2002). TGF-beta receptoractivated p38 MAP kinase mediates Smad-independent TGFbeta responses. EMBO J., 21, 3749-3759. https://doi.org/10.1093/emboj/cdf366
  100. Zavadil, J. and Bottinger, E.P. (2005). TGF-beta and epithelial-tomesenchymal transitions. Oncogene, 24, 5764-5774. https://doi.org/10.1038/sj.onc.1208927
  101. Zavadil, J., Cermak, L., Soto-Nieves, N. and Bottinger, E.P. (2004). Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J., 23, 1155-1165. https://doi.org/10.1038/sj.emboj.7600069
  102. Zavadil, J., Narasimhan, M., Blumenberg, M. and Schneider, R.J. (2007). Transforming growth factor-beta and microRNA: mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs, 185, 157-161. https://doi.org/10.1159/000101316
  103. Zhou, B.P., Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M. and Hung, M.C. (2004). Dual regulation of Snail by GSK-3betamediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol., 6, 931-940. https://doi.org/10.1038/ncb1173

Cited by

  1. ROCK Inhibition Extends Passage of Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium vol.3, pp.9, 2014, https://doi.org/10.5966/sctm.2014-0079
  2. Overexpression of zinc finger E-box binding homeobox factor 1 promotes tumor invasiveness and confers unfavorable prognosis in esophageal squamous cell carcinoma vol.35, pp.12, 2014, https://doi.org/10.1007/s13277-014-2494-8
  3. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis vol.13, pp.1, 2015, https://doi.org/10.1186/s12958-015-0084-2
  4. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review) vol.34, pp.6, 2015, https://doi.org/10.3892/or.2015.4288
  5. The natural compound codonolactone attenuates TGF-β1-mediated epithelial-to-mesenchymal transition and motility of breast cancer cells vol.35, pp.1, 2015, https://doi.org/10.3892/or.2015.4394
  6. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0151598
  7. Rhapontigenin inhibits TGF-β-mediated epithelial-mesenchymal transition via the PI3K/AKT/mTOR pathway and is not associated with HIF-1α degradation vol.35, pp.5, 2016, https://doi.org/10.3892/or.2016.4664
  8. CCL18 promotes the invasion and migration of gastric cancer cells via ERK1/2/NF-κB signaling pathway vol.37, pp.1, 2016, https://doi.org/10.1007/s13277-015-3825-0
  9. Quercetin modulates Wnt signaling components in prostate cancer cell line by inhibiting cell viability, migration, and metastases vol.37, pp.10, 2016, https://doi.org/10.1007/s13277-016-5277-6
  10. MicroRNA Regulation of Epithelial to Mesenchymal Transition vol.5, pp.1, 2016, https://doi.org/10.3390/jcm5010008
  11. MicroRNA-21 activation of Akt via PTEN is involved in the epithelial–mesenchymal transition and malignant transformation of human keratinocytes induced by arsenite vol.5, pp.4, 2016, https://doi.org/10.1039/C6TX00041J
  12. Roles of Dietary Phytoestrogens on the Regulation of Epithelial-Mesenchymal Transition in Diverse Cancer Metastasis vol.8, pp.6, 2016, https://doi.org/10.3390/toxins8060162
  13. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p vol.16, pp.1, 2017, https://doi.org/10.1186/s12943-017-0685-9
  14. Notch1 signaling induces epithelial-mesenchymal transition in lens epithelium cells during hypoxia vol.17, pp.1, 2017, https://doi.org/10.1186/s12886-017-0532-1
  15. Cell–Substrate Dynamics of the Epithelial-to-Mesenchymal Transition vol.17, pp.5, 2017, https://doi.org/10.1021/acs.nanolett.7b01558
  16. Effect of Slug-Mediated Down-Regulation of E-Cadherin on Invasiveness and Metastasis of Anaplastic Thyroid Cancer Cells vol.23, pp.1643-3750, 2017, https://doi.org/10.12659/MSM.902725
  17. Hook1 inhibits malignancy and epithelial–mesenchymal transition in hepatocellular carcinoma vol.39, pp.7, 2017, https://doi.org/10.1177/1010428317711098
  18. Matrix Metalloproteinases-7 and Kidney Fibrosis vol.8, pp.1664-042X, 2017, https://doi.org/10.3389/fphys.2017.00021
  19. PLK1 Promotes Invasion of Esophageal Squamous Cell Carcinoma Cells through Inducing Epithelial-Mesenchymal Transition vol.998-999, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.998-999.279
  20. The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review vol.19, pp.1, 2018, https://doi.org/10.3390/ijms19010107
  21. Targeted inhibition of endoplasmic reticulum stress: New hope for renal fibrosis vol.16, pp.2, 2017, https://doi.org/10.3892/mmr.2017.6762
  22. Telomerase reverse transcriptase mutations are independent predictor of disease-free survival in Middle Eastern papillary thyroid cancer vol.142, pp.10, 2017, https://doi.org/10.1002/ijc.31225
  23. Differential Characterization of Temozolomide-Resistant Human Glioma Cells vol.19, pp.1, 2018, https://doi.org/10.3390/ijms19010127
  24. Solute Carrier Family 27 Member 4 (SLC27A4) Enhances Cell Growth, Migration, and Invasion in Breast Cancer Cells vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113434
  25. MicroRNA-221 promotes cell proliferation, migration, and differentiation by regulation of ZFPM2 in osteoblasts vol.51, pp.12, 2018, https://doi.org/10.1590/1414-431x20187574
  26. Forkhead-box R2 promotes metastasis and growth by stimulating angiogenesis and activating hedgehog signaling pathway in ovarian cancer vol.119, pp.9, 2018, https://doi.org/10.1002/jcb.27148
  27. The interaction of Lin28A/Rho associated coiled-coil containing protein kinase2 accelerates the malignancy of ovarian cancer pp.1476-5594, 2019, https://doi.org/10.1038/s41388-018-0512-9
  28. vol.132, pp.18, 2018, https://doi.org/10.1042/CS20180425
  29. Nur77 suppression facilitates androgen deprivation-induced cell invasion of prostate cancer cells mediated by TGF-β signaling vol.20, pp.10, 2018, https://doi.org/10.1007/s12094-018-1862-z
  30. The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF–ERK signaling vol.293, pp.12, 2018, https://doi.org/10.1074/jbc.RA117.000333
  31. Glioma infiltration and extracellular matrix: key players and modulators vol.66, pp.8, 2018, https://doi.org/10.1002/glia.23309
  32. The EBV-Encoded Oncoprotein, LMP1, Induces an Epithelial-to-Mesenchymal Transition (EMT) via Its CTAR1 Domain through Integrin-Mediated ERK-MAPK Signalling vol.10, pp.5, 2018, https://doi.org/10.3390/cancers10050130
  33. The Molecular Basis of Adenomyosis Development vol.33, pp.1, 2018, https://doi.org/10.12750/JET.2018.33.1.49
  34. TWIST1 induces expression of discoidin domain receptor 2 to promote ovarian cancer metastasis vol.37, pp.13, 2018, https://doi.org/10.1038/s41388-017-0043-9
  35. A scalable filtration method for high throughput screening based on cell deformability vol.19, pp.2, 2019, https://doi.org/10.1039/C8LC00922H
  36. Epithelial to Mesenchymal transition, eIF2α phosphorylation and Hsp70 expression enable greater tolerance in A549 cells to TiO2 over ZnO nanoparticles vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-36716-2